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Summary 

 

Graph-structured databases are gaining popularity lately due to their ease of creation, maintenance and 

representational power. However, very little research actually can be found in employing these databases 

for complex tasks such as pattern recognition in databases. In order to perform pattern recognition, it is 

necessary to extract and exploit the features found in the database. Features can be explicit (usually related 

to elements called properties of a certain object in the database), structural (related to the way the elements 

are interconnected) or syntactic (related to a certain grammar to form certain connection patterns). This 

report presents the results of the analysis of the structural features. With the novel methods proposed for 

extracting structural features, it is possible to perform some pattern recognition tasks, before unattainable 

by previous explicit features.  

 

With the same mathematical framework used for structural feature extraction, the research reported here 

has shown a novel method for transforming database structure in order to accommodate the use of legacy 

and third-party databases for novel pattern recognition methods. This method is both robust and simple to 

implement, because it uses the concept of equivalence of semantics between the databases in a step-by-step 

simplified process. 

 

Scalability and efficiency are two other major concerns when dealing with graph-structured databases. This 

document presents also a novel modification to the proposed feature extraction algorithm that employs the 

concept of sampling, rarely used for feature extraction. This method can compromise feature accuracy by 

processing time and memory use. In order to deal with complex networks, a novel evolutionary algorithm-

based sampling method was proposed to effectively use heuristics related to the position of high-valued 

features in order to bias the sampling towards obtaining the values of these features earlier. 

 

Two broad-scale examples of application of the proposed method are shown in order to consolidate the 

concepts presented and show the effectiveness of the proposed method for obtaining features not easily 

obtainable using other methods. 
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CHAPTER 1 

Introduction 

This report presents a vital step towards pattern recognition in graph-structured databases by proposing 

methods for dealing with structural feature extraction. Structural feature extraction is the process of 

obtaining quantitative measures of qualitative features related to how the elements in the database are 

connected to each other. This issue is extremely important in a large number of problems. For example, in 

collections of journal articles, the number of times a certain author’s papers reference a specific article or 

set of articles is essential to define the area of research of this author than just using information of the 

names of the papers referenced. Another important area of application of this method is on the analysis of 

social networks [1]. For instance, accurate analysis of the behavior of social groups is critical for predicting 

impact of diseases in the population. The analysis of formation and operation of terrorist groups also 

benefits greatly from social network analysis. In this field of research, not only the existence of contact 

between people is important, but the frequency of this social contact. The latter is regarded as a structural 

feature of the database. 

 

With the framework developed for dealing with structural feature extraction, it is also possible to perform 

ontology mapping, i.e. the transformation of the structure of databases. This process is of extreme 

importance when integrating data from third-party and legacy databases, in which structures were not 

created to deal with the requirements of the system in mind. 

 

In summary, the contributions of the research reported in this document are as follows: 

 

1. New formalization and analysis of features in graph-structured databases. 

2. Creation of simple algorithms for pattern recognition in graph-structured databases that identify 

explicitly-defined and example-based patterns. 
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3. Development of a method for extracting structural features in graph-structured databases that 

contains basic support for syntactic feature extraction. 

4. Use of formal definition of features for performing database structure transformation in order to 

adapt third-party or legacy databases to project processing requirements. 

5. Development of a method for approximating database structural features by using sampling of 

graph structures through an optimal “black-box” sampling policy and an evolutionary algorithm-

based sampling policy. 

6. A novel method of semi-automatic method for disambiguation of author names in databases of 

journal collections by using structural features and simple text similarity ranking. 

 

1.1. Graph-Structured Databases 

 

With the increase in wide-spread use of databases in various complex applications, well-established 

database system approaches became ill-fitted for dealing with the current processing demands. These 

approaches have shown to be hard to evolve, interoperate, and merge with other databases, and are 

especially difficult to understand [2]. Understandability is a two-fold concept: user understandability, 

which leads to less costly databases to construct and maintain; and computer understandability, related to 

the ability of applying automatic and semi-automatic reasoning routines to the database to spot trends and 

inconsistencies [3]. A solution to this problem that is gaining popularity in recent years is the use of 

ontology languages, standardized methods of defining data structure. 

 

The most well-known definition of ontologies is the one given by Gruber [4] as “an explicit specification of 

a conceptualization.” In other words, ontologies are used to enable the formal representation of the 

concepts behind the knowledge that is to be represented. These concepts are usually thought as the 

interrelation between the different elements of the subset of the reality that is being represented. 

 

Although the concept of ontology as the structure in which reality is defined dates back to early philosophy, 

formal algorithms and computational methods appeared only with the emergence of the artificial 
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intelligence research. These early methods were highly problem-dependent. Initiatives for standardizing 

these representations are relatively recent. Most current standards are based on first order logic applied on 

frames or on description logics (DL) [5]. Current ontology language research is fueled by the Semantic 

Web initiative [6] and is thus based on web technologies, mainly XML, extensible markup language. 

Among the currently used languages, this study will focus on the current state-of-the-art for the Semantic 

Web, OWL, the Web Ontology Language, recently published by the World Wide Web Consortium (W3C) 

as a recommendation [7]. 

 

OWL is built on two other W3C recommendations: XML and RDF(S) (Resource Description Framework 

and Schema). This fact facilitates the implementation of ontologies by using already well-established 

standards. XML defines basic text semantics, organizing the data files as tagged text files. RDF [8] defines 

a way to describe elements using general triples (subject, verb, object). In other words, it represents 

concepts based on a graph data model, where the verb is an edge connecting two concepts, the subject and 

the object. RDFS [9] adds the ability for the definition of vocabularies using RDF, it makes it possible to 

define meta-data using RDF (class and property type definition). Currently RDF and RDFS are merged in 

one single W3C recommendation. 

 

Although some skepticism still exists about the restrictions that these standards impose on an ontology 

representation language, especially the restriction to only use triples [10], these standards are being backed 

up by important industrial and academic partners. Assessment of the usefulness and relative merits of these 

standards is outside the scope of this study. The goal of the research covered by this report is to propose 

and analyze methods that deal with graph-structured databases, and the current standards presented above 

for data representation are in the end generating this class of databases. In order to support the convergence 

of databases to using standardized ontologies for representing the structure, it is necessary to provide 

methods for performing important database processing operations in the resulting graph-structured 

databases. The scope of this research is to provide one of these database operations, namely structural 

feature extraction. 
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Figure 1-1 shows a very simple example of an ontology and the corresponding data. The graphical 

representation of the ontology does not follow any standardized language, but contains concepts borrowed 

from the OWL standards. 

 

  

 (a) (b) 

Figure 1-1 - Example of (a) ontology and (b) data for a conceptual network of people and friends 
 

The ontology (Figure 1-1(a)) contains class types (the rectangles) that represent the types of objects in the 

database, and property types (the arrows) that represent the type of relations that the elements can have 

among each other. These are called the ontology elements. The lines between the ontology elements 

represent special semantic connection between these elements. In this document only three semantic 

connections will be considered: inheritance (the connection between a person type and a man and a woman 

element types), disjoint classes (between a man and a woman in this example), and inverse properties. The 

data (Figure 1-1(b)) contains objects (the closed objects) and properties (the lines). These are instances of 

the types defined in the ontology, i.e., they are specific cases of the concept presented in the ontology that 

exist in the “real-world.” The symbols inside the class types in the ontology are used when displaying the 

data to represent the object type. For instance, the element “Peter” is represented as a hexagon, thus it is an 

instance of a “Man” class type. 
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Technically, inverse properties are properties that if one property has an instance, i.e., an entry in the 

database, connecting object A to B, then there has to be an instance of its inverse also, connecting B to A. 

To simplify the representation of the data, when there is no uncertainty, a single line will be used in the 

data to represent an instance of the pair of inverse property types. This simplifies the data representation 

greatly. In few cases when uncertainty is involved (see example in Section 3.7), legends will be used to 

explicitly define the type of elements that the property is an instance from.  

 

Disjoint element types are defined so that there cannot be any object in the database that is an instance of 

both types simultaneously. This visual method can facilitate the understanding of the database, but it might 

increase the difficulty to present for very large databases with a large number of ontology elements, 

especially when there are many cases of multiple instantiation. One simple example when this could be an 

issue is if another class type in the ontology is a profession. An instance of a person can also be an instance 

of a profession. For the databases being used in this study, this is not an issue, thus this will be the standard 

used for representing ontologies and graph-structured data throughout this document. It has to be 

emphasized, however, that the algorithms proposed in this document do not have this limitation, only the 

graphical representation method employed. 

 

The graph structure of the database can be easily observed in this simple example. Some elements do not 

contain all the properties defined in the ontology. This may be due to incompleteness of the database, or to 

the lack of this piece of information. For example, in a database of students non-American international 

students may not have a Social Security Number. Despite the natural representation of the ontology-

structured database as a graph, most ontology applications still use a relational database as the basis for 

their data storage. This is mainly because there is little research being conducted on graph-structured 

databases in respect to efficient database engines, i.e. off-the-shelf software for storing and searching 

graph-structured databases; and the incorporation of this paradigm in programming languages. It is not 

within the scope of this research to seek a solution to this problem. Despite the assumption of a purely 

graph-structured database, its current implementation relies on relational databases for element persistence. 

More details about the implementation will be given in Chapter 6.  
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Graph-oriented databases are similar to object-oriented databases in the sense that they contain a definition 

of classes (the ontology) and instances of these classes (the data) [11]. Object-oriented database research is 

fairly advanced. However, there is still a very low amount of adoption of this technology in the industry, 

mainly due to the need for training and transformation of large databases, and the lack of adequate 

commercial software to support very large databases [12]. There is an important difference between graph-

structured and object-oriented databases, though: that graphs only contain data and relations, while object-

oriented databases are able to store functions related to each class also. Most object-oriented databases, 

mainly because of possible conflicts that the existence of functions may cause, do not support multiple 

inheritance, an important feature of graph-structured databases [13]. Therefore, despite the fact that there 

are many commercial implementations of object-oriented databases, and most modern languages support 

object-oriented design, it is not possible to emulate graph-structured databases employing these databases. 

 

An initial analysis on pure graph-oriented databases was published by Gyssens et al. [14], who present a 

graph-oriented object database model with methods for storing and querying graph-structured databases. 

Their model makes a clear distinction between data objects (objects that represent numerical or text values) 

and entity objects (objects that have abstract representation in the computer, usually containing a group of 

data objects for identification), in a very similar way that relational databases do [15]. A transformation 

language is also proposed based on four elementary graph manipulation functions, node addition, node 

deletion, edge addition and edge deletion. It also defines a method to call operation that is inspired by 

object-oriented designs. The concept of this project is very interesting and has been highly influential on 

graph-structured and semi-structured database research. 

 

A fair amount of research exists in defining graph (and tree) query languages [16]. Most of these are 

focused on dealing with semi-structured databases, such as XML-structured databases or BibTex files 

(bibliographic files for LaTeX document preparation language). Below is a short review and analysis of 

key proposed languages. 
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Consens and Mendelzon [17] proposed one of the first graph-structured database query language, 

GraphLog. This language is based on first-order logic and is restricted by its global concepts. The query 

language, because of its high expressiveness, is sometimes very cumbersome to use, requiring very 

complex expressions for fairly simple queries.  

 

Paredaens et al. [18] have proposed to combine the power of logic for expressiveness, objects for modeling 

power and graphs for representing data and queries. The whole query language is based on color and 

pattern-coded boxes, ellipses and lines. Although this makes most queries easy to understand, more 

complex queries can become quite cumbersome to build and analyze. Moreover, automatic generation of 

user-understandable queries is restricted by the ability of element placement in graphs.  

 

Cardelli and colleagues [19] presented a method for querying graphs based on Spatial Logic [20, 21]. Their 

proposed query language is based on pattern matching and recursion. The query language is fairly concise 

and shows large similarity with their proposed graph description language, which makes the construction of 

the queries easier. However, the recursion ability tends to makes the expressions difficult to understand 

and, thus, to debug. Misuse of recursion can also cause very serious efficiency problems, also observed in 

recursive query languages for relational databases [22]. 

 

Formal definitions of graph-structured databases focusing on the operations of interest will be presented in 

Chapter 2. The next section presents the goals and current developments in the field of feature extraction in 

databases. 

 

1.2. Feature Extraction in Databases 

 

Pattern recognition is “a problem of estimating density functions in a high-dimensional space and dividing 

the space into regions of categories or classes” [23]. On important step in the pattern recognition process is 

of feature extraction. The objective of the feature extraction step is to identify and extract quantitative 

values that assist in discerning the patters of interest. For example, in a voice signal, it is interesting to 
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define if the person who is talking is a male or female. One possible feature would be the frequency of the 

voiced signals. Typically, males have lower pitch than females because their vocal folds are longer and 

more massive [24]. 

 

Features vary in degrees of complexity for extraction. For example, for the same problem in the previous 

paragraph, the vocabulary used in the speech can also be used to indicate the gender of the speaker. 

However, if what is obtained is the voice stream, the transformation from this voice stream to a dictionary-

based multi-dimensional representation is highly complex (not taking into consideration the overall 

feasibility of the process with current state-of-the-art algorithms). The ability to use it to classify the 

pattern, also called separability or classifiability of the patterns given the features [25] is another important 

concern. For instance, the ability to classify the gender of the speaker based on the content is highly 

varying with the subject of the conversation [26]. 

 

Another important phenomenon that has to be taken into consideration when performing feature extraction 

for pattern recognition is the “curse of dimensionality” [27]. It has been shown that by increasing the 

number of features of a problem, the search space increases exponentially and the classifiability diminishes 

exponentially (due to the compound increase in noise-related errors). Thus it is necessary to correctly 

choose the minimal features that provide the highest separability. There are many methods devised to 

reduce the dimensionality of the problem while controlling the loss of information in the process. A brief 

discussion about these existing methods will be provided in Section 3.5. 

 

Although abundant research exists about feature extraction of signals, such as image and speech signals, 

very little research was devoted in extracting features from database content. The main difference between 

extracting features from signals and from databases is that most of the database features are categorical and 

isolated, while signals are sparse. Categorical features contain values that are discrete and cannot be 

compared. For instance, the name of a person is a categorical feature of this person. Isolated features, as 

opposed to sparse features are features obtained directly from single values or structures in the database. 

Sparse features cannot be characterized without considering a large group of values, usually related with 
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each other by time connection. For example, when analyzing features in the vibration generated from a 

helicopter engine to identify faulty behavior [28], the features of interest are related to the time correlation 

of the signal observed. However, when observing a collection of journal papers to extract the most 

important authors, the features of interest is the number of papers published by the author and the times 

these papers were referenced by other papers, or the institution where the author works. This difference 

generates a completely distinct requirement for the processing of this type of data. 

 

Features in databases can be divided into three different types: explicit features, structural features, and 

syntactic features.  

 

• Explicit features are related to numeric or categorical features directly connected to an element of 

the database. For example, in the aforementioned identification of important authors, the 

institution where the author works is an explicit feature that can be regarded as an important 

feature. 

• Structural features are related to the nature of the connections between certain elements of the 

database. For example, the number of papers published by an author in the database is not a field 

in the database, but a number connected to the amount of connections that exist between the 

author and paper elements. Likewise, the number of times the papers written by the author are 

referenced is a feature that is related to the number of connections that exist between an author and 

papers, then by these papers and other papers through citation links. A more detailed explanation 

of these types of features will be given in Chapter 3.  

• Syntactic features  are features that are related to the adherence of a certain data to a grammar 

[29]. This can be seen as a more formal method for defining patterns as being formed by explicit 

production rules. For example, when analyzing social relations, it is sometimes interesting to 

define as a single feature people that are directly and indirectly associated (because indirect 

associations may represent direct associations that were not extracted). This can be done easily by 

defining grammar rules and weights to production rules. More information about these types of 

features will be provided in Section 3.6. 
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As explicit features do not require special methods for extracting, the scope of the methods proposed in this 

document is on dealing with structural features, i.e., features directly related to the connectionist nature of 

the elements in the database.  

 

A very common issue observed when dealing with the nature of the connection between the elements on a 

database is that most graph-structured databases present a connection distribution that forms a complex 

network. The next section will introduce this concept. 

 

1.3. Complex Networks 

 

The term “complex networks” is usually vaguely defined in the literature. One of a few more specific 

definitions was given by Caldareli [30]: “complex networks are sets of many interacting components whose 

elaborate collective behavior cannot be directly predicted and characterized in terms of the behavior of 

their individual components.” 

 

Unlike random networks, complex networks display a large variance in the graph parameters so that by 

observing a small area in the graph it is impossible to predict how the rest of the graph looks like. Random 

networks usually contain a fairly homogeneous connectivity between elements, while complex networks 

present phenomena such as preferential attachment. Preferential attachment is a feature of the dynamic 

process of network growth in which the elements with the most connections have greater chances of getting 

a new connection. Figure 1-2 shows a simple example of the difference between a random network and a 

complex network. 
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Figure 1-2 - Example of different types of networks. (a) random network; (b) preferentially connected network 
 

It is easy to observe from the examples shown in Figure 1-2 that in random networks, the number of 

inbound and outbound edges from each vertex does not vary much, while in the preferentially connected 

network these values do present a very large variance.  

 

As previously mentioned, complex networks have been extensively researched in recent years. Research in 

these types of networks has been focused mainly on two aspects: analysis of the distribution of real-world 

networks and modeling to explain the phenomena behind those observed distributions. In the analysis of 

real-world networks, it has been observed that many of these networks are preferentially connected, 

presenting an apparent power-law, or Zeta distribution that follows the following formula [31]: 

 

 
( )

( ) kP k
γ

ζ γ

−
= , (1.1) 

 

where P(k) is the probability of the given vertex to have degree k (k number of edges), γ is the Zeta 

distribution exponent and ζ(γ) is the Riemann zeta function. 

 

This distribution was observed in the World Wide Web [32], metabolic networks [33], Internet router 

connections [34], journal paper reference networks [35], sexual contact networks [36], and other real-world 
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networks. However, most of the times, the methods used to identify the fitness to the actual Zeta 

distribution does not follow rigid statistical evidence. In [37] a more rigorous method for determining a 

goodness-of-fit measurement for this highly skewed distribution is presented. Having good knowledge of 

the underlying distribution of the network parameters is vital for analyzing possible heuristics that can be 

used for determining the feature values, as will be discussed in Chapter 5. 

 

Advancement also has been made in generating models of systems that present preferentially connected 

behavior. One of the most important is the Barabási-Albert model (BA) [38] , a special case of the Yule 

model [39]. The BA model defines a probability of connection between two elements on a growing directed 

graph being directly proportional to the number of connections: 

 

 ( ) i
i

j
j

k
k

k
Π =

∑
, (1.2) 

 
where Π(ki) is the probability of connection to vertex i, and ki is the in-degree (the number of incoming 

edges) of vertex i. This simple rule has been shown to produce a preferentially connected in-degree (the 

number of incoming edges in a vertex) distribution that approximates to a Zeta distribution with exponent γ 

= 3.0. A number of studies have been conducted on the generalization of the model and there are important 

recent review papers on the subject [40-42], worthy of further reading.  

 

1.4. Proposed General Pattern Recognition System 

 

In Figure 1-3 the high-level overall pattern recognition in ontology-structured databases system is 

envisioned. This system is presented in this section in order to clarify the full requirements for a complete 

pattern recognition system. Detailed discussion of this system is outside the scope of this study. The goal of 

this research was to analyze and implement the feature extraction process of the system. However, in order 

to provide a complete overview, some of the processes involved in Figure 1-3 have also been implemented, 
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but have not been analyzed in their entirety. Below a brief summary of each of the proposed elements of 

the overall system will be presented.  

 

Figure 1-3 - Ontology-based pattern recognition system 
 

The system is divided into three different subsystems that interact with each other, providing feedback for 

improvement. The first is of Domain Ontology Acquisition, i.e. the extraction and accommodation of the 

structure and the data of interest. This system makes use of reusability ideas behind modern ontologies [3, 

43, 44] and the wealth of automated and semi-automated methods for ontology extraction [5, 45, 46]. It 

would also employ automated and semi-automated methods for data extraction from different unstructured, 

semi-structured, or structured databases [47-50]. The specific processes in this subsystem are presented 

next. 

 

Ontology-based information extraction: This method extracts the data from external databases and 

structures this data based on an ontology of interest. It employs different methods depending on the data 

source used. For example, for free-text unstructured or semi-structured data, natural language processing 

methods may be necessary to extract the required information. In semi-structured databases, such as the 

World-Wide Web, a very large amount of research has been devoted into using wrappers to facilitate the 
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extraction of the information [51-54]. These wrappers can easily interface with ontologies [55]. However, 

very little research addresses the use of the ontology for facilitating wrapper creation and maintenance. As 

of structured databases, sometimes it is necessary to perform structure transformation and mapping to adapt 

the initial structure to the needs. More information about this process will be given in Chapter 4. 

 

Ontology learning: This process uses the data to obtain the structure of the database, or to suggest 

structure to a user that will be used to facilitate the construction of the ontology for the database. A number 

of different methods have been proposed in the literature, such as the use of clustering [56], inductive logic 

programming [57], association rules [58], frequency-based [45], pattern matching [59], and simple 

classification methods [60]. 

 

Ontology mapping: In this process, the ontologies of the databases being extracted are mapped to 

elements in the ontology being used for analysis. This mapping can be as simple as changing the name 

conventions of the elements (human being  person, for example), or more complicated such as the 

creation or removal of whole element types. More details about ontology mapping will be discussed in 

Chapter 4. 

 

Ontology visualization: As most of the ontology creation methods are highly human-intensive while 

natural language processing is still a challenge and there is no standardized structure for all databases ever 

created, it is necessary to present an expert user with an interface to create and correct the ontology, as well 

as making possible bindings between the ontology and the data. This is accomplished by the ontology 

visualization process. A number of different ontology visualization programs have been developed 

throughout the years, such as Protégé1. It would be necessary to make modifications in these off-the-shelf 

programs, though, in order to be in tune with dealing with the other proposed ontology acquisition 

processes. 

 

                                                 
1 Available at http://protege.stanford.edu  
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The result of this subsystem is the construction of two databases, one containing the ontologies, or the 

definition of the graph-structured databases; and the other contain the graph-structured data. To facilitate 

the reuse of ontologies, these databases follow the OWL specifications, mentioned above. 

 

The second subsystem, on the right of Figure 1-3, performs the pattern recognition per se. More details 

about the pattern recognition process will be given in the following chapters. Some brief descriptions about 

the processes depicted will be given below. 

 

Ontology pre-processing: This process has the goal of applying modifications to the database so that the 

processing of the features becomes less time-consuming. More details about this process will be given in 

Chapter 4. Some methods might require the extraction of more information from the database, thus 

triggering the information extraction process. 

 

Feature extraction: The feature extraction process obtains the features of interest from the database in 

order to perform the pattern recognition later. This process will be explained in details in Chapter 3. 

 

Feature selection: After the extraction, in order to cope with the curse of dimensionality, in some cases it 

is necessary to apply transformations to the features in order to decrease the dimensionality before the 

pattern recognition. A good amount of research has been devoted to this process, and, although it is not in 

the scope of this research, a brief discussion about the problem and possible solutions will be given in 

Section 3.5. 

 

Pattern recognition: The pattern recognition process is the goal of the system. It has the objective of 

determining the location of the patterns of interest in the database. It returns the group of elements in the 

database that could be of interest, rating them in degree of possible interestingness. Although pattern 

recognition is no not within scope of this study, some discussion is necessary to support the results of the 

feature extraction, provided in Chapter 3. 
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Pattern learning: Sometimes the pattern of interest is not explicitly known by the user of the system. In 

this case it is necessary to accept modifications on the results of the pattern recognition based on feedback 

given from the user after the patterns are displayed. Learning is based on positive and negative feedback 

from the examples shown and this has to be incorporated into the pattern recognition step. Further 

discussion about this process will be provided in Chapter 3.  

 

The output of this subsystem is a rated or ranked list of instances in the database that display features that 

suggest the existence of the pattern of interest. These pattern-bearing candidates are displayed to the user 

who analyzes their actual similarity to the high-level pattern of interest and feeds back information to 

improve the process. This visualization is done by a separate subsystem, the Visualization System. 

 

Visualizing large graph-structured databases is a very difficult issue on all graph-structured systems. 

Methods for presenting data that are structured as graphs dates back to the initial analysis of graph theory 

and the presentation of planar graphs [61]. A large amount of work has been done by researchers in the last 

few years to provide methods for visualizing non-planar graphs, or large graphs in which the cost of 

determining planarity is too high. Methods based on force-directed placement [62], self-organizing maps 

[63], clustering [64, 65], Pathfinder networks [66], minimum spanning trees [67], among many others, have 

been used in a number of different types of databases showing their strengths and weaknesses. 

 

As mentioned before, it is not within the scope of this research to develop and present a new visualization 

method to the user with a way to interact with the results presented. However, because of the need for user 

feedback to determine if the patterns observed are actually close to what was sought for, it is necessary to at 

least analyze the requirements of such visualization system. These requirements and the details of the 

implementation of a very simple but effective visualization system are presented in Section 3.4. Below a 

short description of each of the processes presented in Figure 1-3 will be presented. 
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Pattern visualization: This process isolates the elements that suggest the presence of the pattern of 

interest. It generates simple graph structures that assist in displaying to the user the rationale why the 

features indicate the pattern. 

 

Data browsing: This process generates a more powerful method for the user to browse the graph-

structured data related to any parameters added by the user. It is very important to allow free navigation to 

the user in order to enable the improvement of the pattern definitions. Only letting the user observe the best 

matches for the current pattern definition is very likely to provide results that are biased towards certain 

well-known features, usually less interesting. 

 

Pattern example extraction: It is aimed at extracting the information necessary for the pattern learning 

algorithm to update its pattern definition and recalculate the ratings of the pattern-bearing candidates. 

 

Having presented the overall pattern recognition system, the next section explains the structure of the rest 

of the document. 

 

1.5. Structure of the Document 

 

This report is divided in 8 chapters. Next chapter, Chapter 2, introduces some background on important 

concepts on processing and manipulating graph-structured databases that will be used throughout the other 

chapters. Chapter 3 introduces the feature extraction concepts, as well as simple pattern recognition 

procedures and the visualization methods. Chapter 4 presents the database transformation method that 

adapts the database structure, usually obtained from external sources, to the processing requirements. 

Moreover it provides methods for making transformations in the database decreasing the processing cost. In 

Chapter 5 improvements on the pattern recognition processing requirements are provided based on network 

sampling concepts. Chapter 6 presents discussions about the implementation made for all the methods 

presented. Chapter 7 shows some application examples for the proposed algorithms. Finally, Chapter 8 

presents some conclusions and proposes further modifications and research directions. 
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CHAPTER 2 

Manipulation of Graph-Structured Databases 

 

In order to perform structural feature extraction in graph-structured databases, a number of definitions have 

to be introduced. These definitions aim towards a formal description of the steps taken in order to:  

 

• perform ontology transformation, 

• obtain meanings of structural features, and 

• present the results in a graphical mode. 

 

It has to be emphasized that the definitions presented in this document are not complete as of manipulating 

graph-structured databases. They do not deal with creation and removal of vertices and edges directly, nor 

do they present explicit mechanisms for querying graph-structured databases. Graph-structured databases 

when following an ontology are referred throughout the rest of this document interchangeably as an 

ontology space. 

 

Definition 1: An ontology space is an n-tuple  

 

 ( ) ( ) ( ) ( ) ( ) ({ )},0 , ,0 ,, , , , , , ,V V NV E E NEO V O E O T O T O T O T O= … …  (2.1) 

 
where V(O) is a set with all vertices, E(O), is a set with all edges, TV,i(O) is a set that contains all vertices of 

the ith type, and TE,j(O) is a set that contains all edges of the jth type. NV and NE are the total number of 

types of vertices and edges, respectively. The indices i and j are actually labels for the edges and vertices. 

For the remaining of this report, most of the examples these will be labels following the standard that all 

vertex labels start with a capital letter, while the edge labels are not capitalized. 
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The proposed definition is similar to the definition of a graph space [61], only augmenting the classical 

definition by adding vertex and edge types. Another known definition from the literature is the one given 

by Gyssens et al. [14] in which two types of vertices and edges are defined (object and printable object 

vertices, and functional and multivalued vertices). Moreover, a function is used to define the connection 

between the vertices and edges. Because of the desire to use a more graph-theoretical oriented 

representation, the given definition was preferred. 

 

Definition 2: A projection in the ontology space O is represented as ( ), , ,O i j kπ and is a directed graph 

formed by the vertices in the set type TV,i(O) and TV,j(O) and the edges in the set TE,k(O). All edges in the set 

TE,k(O) that do not connect an element in the set TV,i(O) to an element in the set TV,j(O) are removed. If 

, i.e. there are no common element between the types, this graph is a bipartite graph 

with the first partition formed by the vertices in T

( ) ( ), ,V i V jT O T O∩ = ∅

V,i(O) and the second from vertices in TV,j(O). 

 

It is important to note the difference of this definition of projection to what is usually done in bipartite 

network analysis [40]. In the latter case, a projection is a transformation from a bipartite network into a 

weighted network formed by the vertices of one of the partitions with edges present based on the co-

connection to a common vertex in the other partition. In other words, if there exists an edge that connects 

vertex vA to wX and vB also to wX then after the projection there will be an edge connecting vA to vB. A 

similar transformation will be called graph collapsing in this document and will be formally defined in 

Definition 9. 

 

Definition 3: A walk (of length l) in the ontology is a sequence of vertices and edges that connect two 

distinct vertices v0 and vl. These vertices are called the start and end-vertices, respectively. The walk, w, can 

be represented by the sequence 

 

  (2.2) 0 0 1 1 1 1l l lw v e v e v e v
− −

= …

 
such that ei = {vi, vi+1} for all i < l.  
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Definition 4: A weight policy, Ω, is a function O w× → \  that, based on the ontology O and the walk w 

returns a real value, the weight of the walk semantics. 

 

Definition 5: A walk semantics is the set of projections 

 

 ( ) ( ) ( ){ }0 1 0 1 2 1 1 1, , , , , , , , , , , ,l l lO i i k O i i k O i i kω π π π
− −

= …  (2.3) 

 
that can also be simplified as the sequence of alternated labels 

 

 { }0 0 1 1 1 1, , , , , , ,l l li k i k i k iω
− −

= …  (2.4) 

 

where the ij are labels to vertices, and the kj are labels for edges. This second representation will be the one 

used throughout this document. 

 

Definition 6: A walk is said to agree with a walk semantics if and only if they have the same length and 

each of the vertices and edges of the walk in sequence are in the vertex and edge types of the walk 

semantics, also in the same sequence. 

 

Definition 7: The equisemantic walks relative to the walk semantics ω is the set of all walks that agree with 

ω. They are represented as EW(ω). Most of the times it is important to obtain all equisemantic walks 

between two specific vertices vi and vj relative to the walk semantics ω. This is the subset from EW(ω) such 

that the start and end-vertices of the walks are vi and vj, respectively. They are represented as EW(vi, vj , ω). 

 

Definition 8: The weighted equisemantic walks relative to the walk semantics ω and the weight policy Ω, 

WEW(ω, Ω) is a set of tuples, where each tuple is formed by a walk that agree with ω and the weight of this 

walk, following the weight policy Ω. As for the equisemantic walk definition, most of the times it is 
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interesting to obtain its subset with defined start and end vertices vi and vj, represented by  

WEW(vi, vj , ω, Ω). 

 

Definition 9: A collapsed graph given the walk semantics { }0 0 1 1 1 1, , , , , , ,l l li k i k i k iω
− −

= …  is a directed 

graph formed by all vertices vi and vj such that 
0,i V iv T∈  and , lj V iv T∈ , and the edges ek = {vi, vj} such that 

there exists a walk w that agrees with ω and starts at vi and ends at vj. It is also possible to define a weighted 

collapsed graph in which the edges are weighted. These weights are defined by a certain function based on 

the weights of the walks that connect the two vertices in question. 

 

In the special case where , the result of this transformation of graph collapsing is a bipartite 

graph. In the case when  and the walk semantics is reversible, i.e. if there exists a walk w

0, , lV i V iT T∩ =∅

,0, lV i V iT T= i that 

connects vi to vj, there exists another walk wj that connects vj to vi, this procedure produces a non-directed 

graph, similar to the projection usually employed in bipartite graph analysis, as explained above. 

 

Definition 10: The ontological connections between two vertex types i and j, represented as OC(i, j) are all 

the walk semantics that connect the vertex types i and j that do not conflict with any constraints in the 

ontology definition. 

 

Note, thought, that the definition of ontology space does not incorporate the ontology constraints. These are 

obtained from the OWL definition. From this definition, a number of constraints exist, but only two are of 

interest: domain and range of edge types (the types that can and cannot be connected to the in and out 

positions of the edge). 

 

Another important observation that has to be made is that usually the number of ontological connections is 

infinite. However, it can be argued that long walk semantics have very little meaning in most databases. 

Therefore, it is possible to limit the maximum length of the walk semantics that form the ontological 
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connections and, thus making this set finite. A length-limited ontological connections operation is defined 

as OC(i, j, L), where L is the maximum length of the walk semantics in the set. 

 

Definition 11: Two vertex types from two different ontology spaces are considered equivalent if they 

represent the same physical or abstract element. 

 

Definition 12: An equivalent walk between two ontology spaces O1 and O2 is a pair of walk semantics ω1 

and ω2 defined in O1 and O2 respectively so that the initial vertex types are equivalent, as well as the final 

vertex types. Moreover, the abstract or physical meaning behind the connection between these elements 

defined by each of the walks has to be the same. 

 

The above definitions are focused on finding relations between pairs of elements. Although most features 

of interest are related to pairs of elements, mainly because of the lower memory requirements to deal with 

pairs of elements instead of three or more elements, sometimes it is interesting to obtain n-element features. 

One example where features of more than a pair of elements are interesting would be one trying to relate 

geographical position to an element feature. A geographic position is based on two or three values (latitude, 

longitude and, sometimes, altitude). In order to deal with this kind of problems, it is necessary to extend 

some of the definitions above. 

 

Definition 13: An arbitrary equisemantic walk is a set defined by a group of equisemantic walks 

 

 ( ) ( ) ( )( )0 0 0 1 1 1, , , , , , , , ,i j i j iN jN NAEW EW v v EW v v EW v vω ω … ω , (2.5) 

 

such that the graph formed by the connected vertices vik is fully connected. This represents a set of walks 

such that all the vertices vik and vjk are present and at least one walk between the elements vik and vjk follows 

the walk semantics ωk.  
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Sometimes it is important to define the walk semantics in which the arbitrary equisemantic walks are 

defined. Although this is not necessary for the computations involved, it facilitates some discussions. 

 

Definition 14: An arbitrary walk semantics AP is a set of walk semantics 

 

 { }1 2, , , NAP ω ω ω= … , (2.6) 

 
so that the walk semantics ωi are fully connected, i.e., there are no two vertex types TV,i and TV,j in any of 

the walk semantics ωk ∈ AP such that it is not possible to find a walk semantics ω′ that starts at TV,i and 

ends at TV,j such that all vertex and edge types in the walk semantics are part of at least one of the ωk ∈ AP.  

 

Definition 15: A weighted arbitrary equisemantic walk is a set of tuples defined by a group of weighted 

equisemantic walks 

 

 ( ) ( ) ( )( )0 0 0 0 1 1 1 1, , , , , , , , , , ,,i j i j iN jN N NAWEW WEW v v WEW v v WEW v vω ωΩ Ω … ω Ω , (2.7) 

 

such that the graph formed by the connected vertices vik is fully connected. This represents a set of walks 

such that all the vertices vik and vjk are present and at least one walk between the elements vik and vik follows 

the walk semantics ωk. The weight of each of the tuples is defined as the sum of the weights of each of the 

weighted equisemantic walks that form it. 

 

Definition 16: The arbitrary ontological connections set is represented by , or by 

using the length-limited definition 

( ) ( ) ( )( )0 1, , , NAOC v v v…

( ) ( ) ( )( )0 1 0 1 1, , , , , , ,NAOC v v v L L L
−

= … … N . The definition follows 

directly the definition of the standard ontological connections in Definition 10. It is important to note that 

the walk semantics in this set do not have to adhere to a specific order in which the vertices are traversed. 
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A special case of the arbitrary equisemantic walks is when all vik are the same. In other words, all walks 

start from the same vertex. These arbitrary equisemantic walks are referred to as equisemantic star. The 

arbitrary walk semantics related to it is referred to as a semantic star. 

 

These definitions are sufficient to present the formal proposal of the algorithms. The next chapters will 

explain these algorithms in detail. 
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CHAPTER 3 

Structural Feature Extraction 

 

3.1. Introduction 

 

This section presents the main proposed feature extraction algorithm. The concept of pattern recognition in 

graph-structured databases and some basic algorithms will also be analyzed further in this chapter in order 

to enable the analysis of the feature extraction process.  

 

Most existing approaches for pattern recognition on databases focus on the presence or absence of the 

connection between two or more elements of interest. For example, when analyzing the contents of a web 

page, current methods would analyze the use of specific terms in the page or on pages linked by this page 

[53, 68]. Although this method serves its purpose as being able to detect the pattern of interest (the web 

page content), it is not applicable to all possible patterns of interest in the graph database.  

 

The concept behind the proposed algorithm is that a path in an ontology space is created based on a certain 

meaning of connection between the elements. This meaning can then be related to a feature. The presence 

of multiple paths is an indication that this meaning has a higher relation to the group of elements being 

connected by these paths than elements that have less paths of the same type connecting them. For 

example, when trying to analyze a database of journal articles for papers that are more related to a 

particular subject of interest, higher number of references this paper has to papers that are known to be in 

the subject of interest indicates that there is a higher probability that the paper is in the subject of interest. 

Another example would be when analyzing networks of movie actors and movies they have participated, 

actors that participated more often with particular other actors are more likely to be personal friends. 
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Therefore, the proposed method not only contains information about the elements that are interconnected, 

but the structure of this interconnection. More details about this will be shown when the formal algorithm is 

presented in Section 3.2. Another important analysis made in this chapter is about the pattern recognition 

process itself. Depending on the type of problem, the pattern recognition process may have different 

meaning representing different procedures to perform it. The proposed method, unlike most systems ever 

presented, deals with well-known semantics, i.e., the pattern that a user is trying to identify in the database 

contains features that is known or partially known by the user.  

 

This is a reasonable assumption in most cases, because the goal of the problem usually already gives hints 

on what kinds of features may be related, as long as the features can be related to a meaningful concept. 

Features are directly related to the structure of the database. For example, Figure 3-1 shows a simplified 

version of the database structure for bibliographic citations database given by ISI. The complete ontology, 

following the standard defined in Chapter 1 is shown in Appendix I-1. This structure is very simple but 

largely based on a relational model, in which each paper is the center of the database containing a number 

of fields, such as Title, Source (the journal name), Volume number, Issue number, Beginning Page number, 

and Date. Actually ISI provides a number of other elements that are either inexistent in a large number of 

the papers or do not provide any information that is deemed useful for the patterns being analyzed. The use 

of elements that are inexistent in a large number of papers may generate undesired biases on the results. For 

example, the Institution names of the non-first-author authors are something that only appear in some 

journals. Any analyses based on this feature, such as to try to identify journals that promote collaboration 

between authors of different institutions, would only identify these journals, inferring that the journals with 

incomplete information tend to choose only single-institution papers.  

 

In Figure 3-1, if the pattern of interest may be related to journal issue features it would be necessary to 

generate a feature that relates a Paper to three different elements: Source, Volume and Issue. The 

processing requirement for obtaining this feature is, as previously mentioned and will be made clear below, 

both very time- and memory-consuming. However, if the structure presented in Figure 3-2 is used, the 

feature is simply the relation between the Paper and the SourceIssue element.  
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Figure 3-1 - Simplified version of ISI database structure for journal articles 
 

 

 

Figure 3-2 - Modified structure for papers database 
 

 

This transformation for obtaining a structure that is more related to the needs of the processing will be 

formalized in the next chapter. 

 

This chapter is structured into eight sections. Section 3.2 presents the proposed path-based feature 

extraction for ontology-structured datasets. Section 3.3 explains the pattern recognition scheme based on 

the extracted features. A discussion about issues related to user interface will be presented in Section 3.4. 

Section 3.5 analyzes applicable dimensionality reduction schemes for these datasets, while Section 3.6 
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presents some extensions that can be easily made to the proposed algorithm to deal with syntactic features. 

Section 3.7 shows some preliminary experimental results of the main concepts presented. The summary of 

the observations and some conclusions are presented in Section 3.8. 

 

3.2. Proposed Concept of Structural Feature Extraction 

 

The proposed structural feature extraction algorithm is based on the concept that a feature can be related to 

a walk semantics (see Definition 5, in Chapter 2), i.e. the way two (or more if used an arbitrary walk 

semantics, in Definition 14, Chapter 2) elements are connected has a definite meaning (therefore the term 

“walk semantics”). For example, consider these two possible connections between an Author and a Source 

from the structure in Figure 3-2: 

 

 , , ,
, ,publishes in

,Author wrote Publication inSourceIssue
SourceIssue ofSource Source

ω −

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

 (3.1) 

 

 
, , , ,

, ,
,

referred by publishes in

Author wrote Publication citedBy
Publication inSourceIssue SourceIssue
ofSource Source

ω − − − ,
⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

. (3.2) 

 
Although they both connect two elements of the same type, they clearly have different meanings. While 

one refers to the journal preference of an author, the other presents the journal visibility of this author. The 

second walk semantics (3.2) may be interesting to analyze the diffusion patterns of the knowledge among 

different journals, while the first (3.1) is related to the specific field of interest represented by the journal. 

 

Below a formal definition of the structural features will be given. To simplify the notation, the formal 

definition will be given only for pairs of elements. The extension to groups of elements using the concept 

of arbitrary equisemantic walks (Definition 13, Chapter 2) follows directly from this definition.  

 

Formally, the feature value between vertices v1 and v2 following the walk semantics ω can be defined as 
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 ( ) ( )1 2 1 2, , , , ,f v v WEW v vω ω= Ω , (3.3) 

 

where the i  function is defined as the sum of all the weights of the tuples in the weighted equisemantic 

walks set. The weight function Ω is defined following the interpretation of the properties and some possible 

database features, such as preferential attachment. Some examples of weight functions will be briefly 

discussed next. 

 

Element properties can have two different interpretations: static and growing properties. Static properties 

are relative to the creation of the element. In other words, they are properties that exist since the creation of 

the element in the real world. For example, in journal articles, the cites property is a static property, 

because an article is created already with the citations and these do not change throughout the history of the 

element. On the other hand, there are growing properties related to the influence of other elements on this 

element. In the same example of journal articles, the citedBy property is a growing property, because it 

changes every time a new paper is written that cites this paper. 

 

Following this concept the following weight policy is used: set the weight to 1 to all outgoing growing 

properties and 1/k, where k is the number of outgoing edges, to the vertex to all static properties. However, 

this requires the user to be able to identify whether a connection is static or growing. This may be a 

complicated issue in some datasets. In this case, growing connections are considered as default. The 

consequences of this choice will be exploited later in the simulation examples in Section 3.7. 

 

Sometimes it may be interesting to define other types of weight policies. One possible policy is to decrease 

the weight based on the number of incoming edges of the target vertex. This may decrease the bias caused 

by the preferential attachment, however it tends to bias scatter elements [69, 70], which may be an 

undesired effect, as scatter elements possess very little information tending to be highly noisy. Some 

experimentation with this policy will be shown in the examples in Section 3.7. 
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It is important to note, though, that the features extracted through this method are not normalized. If more 

than one feature is used in conjunction, it is necessary to provide a normalization method for them to be 

comparable. Normalization will be treated in the next section when pattern recognition concept will be 

introduced. 

 

Similar ideas have been applied by Alani et al. [71] for identifying communities of practice, in a system 

called Ontocopi (Ontology-Based Community of Practice Identifier). However, in Ontocopi there is no 

distinction made between the different type of elements and relations. The main concern is about distance 

and connectivity. Also there is no application of the static and growing connection differences. Another 

important difference is that there is no implementation of this concept to pattern recognition; a user enters 

the source element and the target size element and the system gives a rating to how close these elements are 

and sorts the results by this rating.  

 

The feature extraction method presented in this section is apparently very simple and natural. However, as 

it is going to be presented and discussed later, there are a number of issues that emerge when actually 

implementing this feature extraction process. The choice of the weight function is also a very important 

element for the success of obtaining the correct feature values. Only a thorough study, as the one provided 

in this report, will provide enough information to enable future exploration of these structural features for 

the important process of pattern recognition. 

 

3.3. Pattern Recognition  

 

As mentioned earlier, pattern recognition in graph-structured databases is a concept that has still to be 

further discussed. This section does not provide an in-depth discussion about the subject, but intends to 

present methods that are useful enough to provide insights about the feature extraction process, described in 

the previous section. 
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Before delving into the specifics of the proposed pattern recognition algorithms, it is important to identify 

what is the concept of a pattern in graph-structured databases. Fukunaga defines pattern recognition as “a 

problem of estimating density functions in a high-dimensional space and dividing the space into regions of 

categories or classes” [23]. Therefore, a pattern from this point of view is a category or class that the 

elements of interest may be part of. More specifically, a pattern is a high-level concept that is likely to 

produce certain effects on the elements of interest such that the properties and surrounding elements are 

affected by it. But a question remains on how the user can present, or teach to an algorithm of what 

constitutes the pattern of interest. 

 

Classically, there are three different methods of presenting patterns: by explicit definition of the features of 

interest, by implicit definition using examples of elements that present the pattern of interest, or by 

unlabeled clustering methods (methods that do not require the user to present any definition of the patterns 

besides usually the number of patterns of interest – the system then automatically groups elements that are 

most likely to be following the same pattern). This last method is not going to be investigated in this study. 

This document will focus on the first two methods of pattern recognition, explicit-based and example-

based. Later these two methods are combined. In the following subsections, each of these algorithms will 

be presented. 

 

3.3.1. Explicitly defined walk semantics 

 

On the explicit definition, the user presents to the system a walk semantics, or a set of walk semantics that 

would represent the pattern that is being searched for. For a single walk semantics, the higher the 

( )1 2, ,f v v ω  value is, the higher is the similarity of the pair of entities to the pattern being searched for. 

However, single walk semantics are only useful in very limited applications. Most interesting patterns 

involve more than two known database entities, or more than two walk semantics between elements. 

However, it is important to note that multiple-entity walk semantics, or arbitrary walk semantics can be 

treated as the combination of the results of each of its composing walk semantics. Thus, in this document 

very little analysis will be made specifically on these kinds of patterns.  
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On the other hand, it is important to deal with patterns that are formed or that can be inferred from a 

conjunction of walk semantics. Each of the walk semantics defines a feature towards the extraction of this 

pattern, forming a feature vector for each pair of vertices, defined as 

 

 ( ) ( ) ( ) ( )1 2, , , , , , ,
T

i j i j i j i j Nf v v f v v f v v f v vω ω ω⎡ ⎤= ⎣ ⎦
G

" . (3.4) 

 

However, it is not possible to compare two feature vectors in order to establish which follows the pattern 

the most. It is only possible to compare scalar values. Therefore, it is necessary to perform a transformation 

in the vectors that would make them scalars. This transformation is performed in three steps: normalization, 

dimensionality reduction and importance weighting.  

 

In the normalization step, the objective is to ensure that the dynamic range of each of the features is the 

same. Different dynamic ranges are observed when features are related to walk semantics of different 

length and different nature (i.e., more interconnected walk semantics show higher number of equisemantic 

walks than very sparsely connected ones, but this does not imply that the higher connected walks are more 

meaningful). A linear normalization is applied for all features: 
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where fi(j) is the feature i for group j of vertices (note that the normalization is defined for features on any 

number of vertices). 

 

The dimensionality reduction step is very important when dealing with high-dimensional feature vectors. 

However, its analysis falls out of the scope of this study. Section 3.5 presents some of well-known 
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dimensionality reduction schemes. However, none of the applications presented employ a very large 

number of dimensions, thus requiring no dimensionality reduction.  

 

The importance weighting step enables the user to define the patterns and add information to which 

patterns are more informative, or more important, than others by choosing weight values for each walk 

semantics. 

 

A threshold value can be applied to the resulting feature value to define which group of vertices shows the 

patterns and which do not. Yet, for some applications, it is preferable to enable the user to browse through 

all results because very low feature values can also be a sign of increasing importance, especially for 

scatter vertices, i.e. vertices that initially were not considered the center of the data collection. This, and 

other visualization issues, will be discussed in Section 3.4. 

 

3.3.2. Example-based pattern definitions 

 

In the example-based case, the user inputs to the system examples of the pattern being searched by 

presenting groups of p vertices that represent the pattern, named the positive examples, and groups of p 

vertices that do not represent the pattern, the negative examples. In this method there is no prior knowledge 

of which walk semantics are important for inferring the pattern. With this information it is possible to 

generate all feasible walk semantics between the p elements within each group, by first generating at least 

one type template τ1,…,τp so that for all the groups of examples, there exists at least one enumeration v1, 

v2,…, vp for each group so that: 

 

 , 1...i iv i pτ∈ ∀ = . (3.6) 

 

If it is possible to generate more than one type template, all can be considered at the same time as 

compound features. This is very common in a case where there are types that are subtypes of other types, 

i.e. givent two types Tx and Ty, Tx is a subtype of Ty if ∀vi ∈ Tx, vi ∈ Ty. In ontologies, this shows that type 
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Tx is a specialization of type Ty. If there is more than one possible enumeration for a certain example, each 

possible enumeration has to be considered as a different example to which the features of the possible 

group will be compared and rated. A very simple example of this phenomenon of multiple enumerations 

can be seen in the publications dataset for author collaboration. When a set of pairs of authors are given as 

examples, for a given pair (a1, a2) the unique mapping M:V2→ (author, author) can be done by either the 

enumeration (a1, a2) or (a2, a1). 

 

Having defined the type templates and the possible enumerations for each template, one can find all 

possible ontological connections between the types of lengths less than or equal to Li, AOC(τ1, τ2,…,τp, L1, 

L2,…,Lp-1), in each of the templates. Where the Li parameters are defined by the user based on the way the 

ontology is made, as mentioned previously.  

 

Now, for each of the walk semantics, it is possible to use the algorithm explain in the previous subsection 

to calculate a feature for all groups, including the positive and negative example groups. This will form 

again a feature vector for all groups. The normalized, and possibly dimension-reduced vectors of all groups 

can be compared to the vectors from the example groups by means of a distance calculation. Given that all 

vectors are normalized, the simplest distance method is the Euclidean distance: 

 

 ( ) ( )( )
1

22
( , ) k k

k
d i j f i f j⎛ ⎞= −⎜ ⎟

⎝ ⎠
∑  . (3.7) 

 

Usually the number of examples is much less than the size of the ontological connections sets. Each group 

now has, as features, a vector of distances to the pattern examples. The simple sum of the distances to the 

positive examples subtracted by the distances to the negative examples can give an approximate single-

variable decision of the groups that exhibit behavior similar to the ones on the examples. Also it is very 

simple to increment this by introducing a weighted sum of these distances in the case that the user is able to 

define an importance to each of the examples provided. It is important to note that in this case the elements 
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that have the lowest distance is the ones that are more likely to be an instance of the pattern of interest, 

while in the previous case the highest feature would indicate it.  

 

Increasing the number of examples improves the efficiency of this method. However, most of the times it is 

costly for the user to be able to identify a large number of examples. There are two possible methods for 

dealing with this shortcoming: the use of the mixed method, explained below, or the use of feedback from 

the results. A user may look at the first results of the application of the method for a small group of 

examples and identify in these results other positive and negative examples that would be fed back to the 

system to define new results. This process will be explored in the examples in Section 3.7. 

  

It is important to note here the large effect that the maximum length parameter when calculating the 

ontological connections has on the efficiency of the method. In most cases, the number of possible walk 

semantics increases rapidly with the increase of the maximum length of a walk. Enlarging the walk 

semantics set increases the amount of equisemantic walks sets that have to be extracted. Keeping a low 

maximum length is directly related to being able to model the dataset more efficiently. 

 

3.3.3. Mixed pattern definitions 

 

Finally, when there is enough knowledge to generate examples of the pattern and to indicate the important 

walk semantics that should suggest the patterns, a mixed method can be used. This method is very similar 

to the example-based method discussed above, but the first feature analysis does not require the generation 

of the ontological connections sets and from this generate the feature vectors. The feature vectors are then 

calculated in an analogous way as the one explained in Subsection 3.3.1. With these features it is possible 

to calculate the distance to the examples, as seen in Subsection 3.3.2. The remaining of the treatment is also 

identical to the example-based method. 
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3.4. User Interface 

 

One of the most important steps when implementing a pattern recognition system in complex systems is 

being able to display the patterns in such a way that the system presents a simplified view and centered on 

the patterns under analysis. However, when dealing with large datasets, sometimes with hundreds of 

thousands of vertices, the number of possible patterns to display is also too large to show in an 

understandable way. The most natural way of observing graph-based datasets is using graphs, as done in 

[72], for example. However, in most cases, specialists prefer the use of tables to show the result of the 

processing because of its natural “clean” interface without the problem of crossing edges and cluttered 

vertices. However, the tabular method cannot show the interaction between the different results. Nor can it 

show enough information to display the reason for the suggested match. 

 

In this document, a mixed hierarchical tabular and specialized graphical method is proposed. A hierarchical 

table is used to easily display the strongest matches giving an option of displaying related matches (other 

strong matches that have common vertices). A graphical method is used for displaying information about 

the reasoning behind the pattern. This is done by showing the equisemantic walks between the selected 

group of vertices and emphasizing the most important of them (either by being high in the given examples, 

or by being the highest feature for this particular group). Figures 3-3 to 3-7 present some snapshots and 

explanations on the visualization system. 

 

 

Figure 3-3 - Main pattern recognition panel showing the results of a simple example-based analysis showing the 
author bibliographic coupling for a given pair, highlighting a specific paper with its inbound and outbound 

vertices 
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Figure 3-4 - Filtering dialog – users can view only specific elements in the output list 
 
 

 

Figure 3-5 - Graphical exploration of a single element – users can select which neighboring or indirect element 
types to show by clicking on an element type and then selecting from a dialog box the walk semantics from a 

manually pre-defined set of interesting walk semantics 
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Figure 3-6 - Feedback from user to add positive and negative examples for example-based pattern recognition 
 

 

Figure 3-7 - Side-by-side comparison of ranking given two different feature extraction/pattern recognition 
procedures for the same group of elements 

 

Further information could be added by mapping selected patterns to other visualizations, such as timelines 

[64] that incorporate temporal information that can be very beneficial in pattern understanding. 

 

When the user has the ability to interpret the results offered by the algorithm it is also interesting for the 

user to be able to iterate through the results and possibly change some examples, or weighting choices for 

the given walk semantics (see Figure 1-3, the visualization system). Moreover, it may be interesting to 

gather more data to increase the amount of details on certain areas of the network. These feedback events 

must be available for the user in a timely manner in order to enable the analysis of their results by the user. 

Methods such as side-by-side comparison between past and current results can be used to further assist the 
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user to choose the correct options for the algorithm. This functionality was also implemented and an 

example of the application can be seen in Figure 3-6. 

 

One final observation about the visualization system is that it allows the user to browse through the whole 

database if desired. The ranked results presented only serve as suggestion to the user of which groups seem 

more likely to be related to the patters of interest. However, sometimes because of the core and scatter 

properties of real-world databases, it is necessary to investigate also elements that end up receiving high 

rank values because of their low connectivity to the acquired data, but present important exceptions among 

other low connected elements. The automatic identification of these elements is complex because of the 

underlying skewed connectivity distribution; therefore it is necessary to enable the expert analysis of the 

database. 

 

3.5. Dimensionality Reduction 

 

As mentioned previously, dimensionality reduction is very important for dealing with features with a large 

number of dimensions. This section provides a short review on the current dimensionality reduction 

methods from the literature and analyzes the usability of these methods in this application.  

 

One of the first methods analyzed is of variable selection. The variable selection procedure uses results 

from the analysis of variance (ANOVA) and analysis of covariance (ANCOVA) for selecting the most 

statistically significant variables [73]. This method is straight-forward and the features selected are simple 

to interpret. Moreover, the results of this method provide good insight on the chosen variable 

independently. However, its power is limited to how much information available on each isolated initial 

feature. In most cases, the output of this method is still a large number of variables.  

 

In more advanced methods, the objective is to obtain composite variables that isolate the variance of the 

initial variables, trying to minimize covariance. Among these methods, four are very popular and basic 
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methods: principal component analysis (PCA), factor analysis (FA), multidimensional scaling (MDS), and 

Latent Class Analysis (LCA).  

 

PCA transforms the original set of variables into a smaller set of linear combinations that account for most 

of the variance of the original set [74]. This method generates very good and robust results in the case when 

the correlation between the elements is linear. However, a significant amount of real-world observed 

correlation is not linear. Moreover, the new variables created with this method are sometimes difficult to 

interpret, thus making the patterns obtained hard for users to understand and interact. In order to deal with 

non-linear correlations, Schölkopf et al. [75] proposed a kernel-based PCA, KPCA, that has shown to be 

effective when non-linear kernels are defined. This method is very appropriate for image feature extraction, 

but methods for porting this concept to feature extraction in databases are not well-understood. 

 

FA is focused on dealing with the interpretability limitation on the principal components. It defines factors 

that are combinations of variables that are known to be correlated [73]. By construction it is natural to 

generate features that are easy to interpret. However, this method is as good as the factors chosen. There is 

no constraint on variance explained, as there is in PCA. 

 

MDS is a method in which the features are transformed into distances, similar to what was done in Section 

3.3.2. A large number of different distance calculations were analyzed in the literature [76], but the main 

goal of this method is to use these distances to present the data points to the user in a two-dimensional 

representation. The goal sought in this step is to decrease the dimensionality in order to avoid the “curse of 

dimensionality” and not for visualization. Therefore, this method will not be explored beyond the analysis 

of distance metrics mentioned above. 

 

Finally, the LCA is an algorithm focused on observing the underlying correlation between binary-type 

variables, where the features are whether a certain event was observed or not, given the element of interest 

[77]. This method is widely used in text analysis, where the features extracted are the presence of 
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keywords. In this field, this algorithm is usually called Latent Semantic Indexing (LSI) [78]. Although this 

method is widely used, some scalability issues still exist [79]. 

 

3.6. Syntactic Features 

 

Syntactic features are defined by a construction grammar. There are many methods of defining grammars 

for graph-structured databases. This study will use the representation proposed by Gonzales and Thomson 

[29] on directional graphs. They present four binary operations, +, ×, −, and ∗, and one unary operation ~, 

shown in Figure 3-8. 

 

Figure 3-8 - Operations on graph-structured databases 
 

After defining the operations, it is possible to define a grammar as a 4-tuple 

 

 ( ), , ,G N P S= Σ , (3.8) 

 

where N is the set of non-terminal elements, Σ is the set of terminal elements, P are the production rules 

and S ∈ N is the starting symbol.  

 

The most important part of a grammar is the production rules, i.e., transformation rules that can be applied 

to transform a non-terminal element into a group of terminal and/or non-terminal elements. A sequence, or 

structure is in the language generated by G, L(G) if and only if it is possible to generate this structure by 
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successively applying the rules in P starting at the element S. Take the example below, where the 

production rules are P = { S → a + S, S → b }, N = { S }, and Σ = { a, b }. The following structure 

 

 a + a + b + b  ∈ L(G),  

 

while 

 

 a + a + b + b + a ∉ L(G). 

 

The proposed structural feature extraction algorithm can be modified to deal with these kinds of features, 

considering that a grammar generates a language that has the same physical meaning, i.e. if the 

meaning of each of the graphs in L(G) is the same (although they can vary on strength to the meaning – the 

weight). For example, a friendship grammar has the following production rules 

 

 . (3.9) { },friendP S S friendOf Person S Person friendOf Person= → + + → + +

 

The terminal elements are the elements in the ontology, Person and friendOf, and the only non-terminal 

element is S, the starting symbol. However, it can be argued that each time an indirect friend is added, the 

less likely the initial person is to actually know the final person, thus considering him/her a friend. 

Therefore, it is reasonable to make a small modification in the production rules set adding a weight for each 

of the production rules, building a weighted grammar.  

 

Definition 17: A weighted grammar is a 4-tuple 

 

 ( ), , ,WG N WP S= Σ  (3.10) 
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where WP is the weighted productions rules, a duple containing the production rule, as defined in the 

classical grammar and a weight relative to the application of this tuple. This weight is used at the end of the 

weight policy to define the weight of each of the syntactic equisemantic walks. 

 

Definition 18: The weighted syntactic equisemantic walks relative to the weighted grammar WG and the 

weight policy Ω, WSW(WG, Ω) is a set of tuples, where each tuple is formed by a walk that agrees with a 

walk semantics ω ∈ L(WG), and the weight of this walk, following the weight policy Ω multiplied by the 

walk semantics weight. As for the weighted equisemantic walk definition, most of the times it is interesting 

to obtain its subset with defined start and end vertices vi and vj, represented by  

WSW(vi, vj , WG, Ω). 

 

It is also possible to easily define an arbitrary weighted syntactic equisemantic walks set, following 

naturally the definition above. It will not be explicitly defined here because it is not of interest to any of the 

analysis done here. Actually, in none of the databases used for testing the algorithm an interesting syntactic 

feature was identified, so it will not be possible to demonstrate the implementation of this algorithm 

variation. 

 

3.7. Sample Application Examples 

 

The examples below are aimed at demonstrating the concepts presented in this chapter. They are simple 

examples made to be simple proof-of-concept ideas and do not aim on presenting highly usable patterns. 

More interesting applications on larger datasets will be presented in Chapter 7.  

 

This example session is divided into three subsections to present each of the three concepts shown above, 

namely the choice of weight policies, feature-based patterns, and example-based patterns. The case of 

mixed features will be shown in Section 7.1, where this method will be applied for obtaining patterns for 

author disambiguation. 
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3.7.1. Analysis of weight policy on explicitly defined patterns 

 

As a result of the discussion presented earlier, five different weight policies were implemented and 

compared side-by-side to confirm the natural intuition about the effects of the choice of weight policy. In 

order to make the example simple to understand, a very simple single feature was chosen: author self-

bibliographic coupling, i.e. authors self-connected by having papers referenced by a common paper. This 

feature gives a good idea of the importance of the author in the field, because it presents a number that is 

directly related to the number of papers that this author published in the field. This feature, defined using 

the following walk semantics: 

 

 , , , ,
, , ,

,Author wrote Publication citedBy Publication
cites Publication writtenBy Author
⎧ ⎫
⎨ ⎬
⎩ ⎭

, (3.11) 

 

is simple and important enough to be a good example to test the results obtained using various possible 

weight policies. 

 

Below, five weight policies will be compared side-by-side: 

 

a) EW: Equal weight to all properties regardless of the number of incoming and outgoing 

connections.  

b) SP: Consider the concept that the cites property is static, therefore the weight policy sets 

the weights of these properties to be 1/k where k is the number of outgoing edges of the 

type. 

c) SPA: Consider the property wrote also to be static. This means that an author has a 

limited knowledge that is divided among the papers written. Although this may not be a 

correct assumption based on the definition of a static property, its application is insightful 

to the way the weight policy works. 
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d) CS: Use the concept of core and scatter to remove the bias of the core by applying a 

weight of 1/k to the cites property in which k is the number of incoming edges to the 

target Publication object. 

e) CSS: Combine the weights used in tests b and d. 

 

The results can be seen in Table 3-1. This analysis shows interesting results on the effects of the weight 

policy. First, if there is no correction for static and growing elements, there is an observable bias on 

elements that have been referenced many times in a single publication. For example, 43 different papers by 

“Deraedt, L” were referenced in a single review paper. The simple visualization methods proposed earlier 

in this chapter have proven to be very effective in spotting this bias. 

 

Table 3-1 - Comparison of different weight policies for identifying important authors in Evolutionary 
Computation 

 Authors 
Rank EW SP SPA CS CSS 

1 Goldberg, DE Goldberg, DE Zhang, F Deraedt, L Deb, K 
2 Fogel, DB Fogel, DB Srinivas, N Muggleton, S Dorigo, M 
3 Deraedt, L Dorigo, M Nelder, JA Dzeroski, S Goldberg, DE 
4 Back, T Deb, K Dorigo, M Perelson, AS Sakawa, M 
5 Michalewicz, Z Back, T Elrad, T Goldberg, DE Fogel, DB 
6 Dorigo, M Michalewicz, Z Nix, AE Takagi, H Poli, R 
7 Deb, K Holland, JH Wolpert, DH Fogel, DE Michalewicz, Z 
8 Muggleton, S Koza, JR Aoki, T Deb, K Back, T 
9 Holland, JH Wilson, SW Ochotta, ES Michalewicz, Z Koza, JR 

10 Yao, X Fonseca, CM Ritzel, BJ Sakawa, M Wilson, SW 
11 Koza, JR Zitzler, E Back, T Poli, R Conrad, M 
12 Fonseca, CM Muhlenbein, H Runarsson, TP Dorigo, M Ishibuchi, H 
13 Cordon, O Davis, L Goldberg, DE Yao, X Cordon, O 
14 Dzeroski, S Beyer, HG Grasse, P Conrad, M Muhlenbein, H 
15 Glover, F Poli, R Fogel, DB Cordon, O Zitzler, E 
16 Perelson, AS Sakawa, M Sareni, B Glover, F Burke, EK 
17 Muhlenbein, H Schwefel, HP Clymer, JR Back, T Vose, MD 
18 Wilson, SW Rudolf, G Bayer, HG Delmoral, P Yao, X 
19 Schwefel, HP Ishibuchi, H Wilson, SW Ishibuchi, H Holland, JH 
20 Poli, R Vose, MD Fonseca, CM Lavrac, N Rudolf, G 

 

 

If the wrote property is also considered static, the results obtained are biased towards authors that have 

published few very important papers in the field, instead of many papers of lower importance. For example, 

“Zhang, F” published a single paper in 1997 that was referenced 19 times. While if the concept of core and 
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scatter is used in the weight policy, there is a natural bias towards authors that wrote a large number of 

papers that have not received many references in the dataset. “Deraedt, L” is again a good example of this 

behavior as the 43 different papers written by this author are not referenced by any other papers in the 

dataset. 

 

Finally, if both weight policies are applied at the same time, the result presents authors that have been 

highly active in the field, with large number of papers that have received good visibility throughout the 

dataset, and not only by a few number of elements. This result (CSS) and the single static policy (SP) are 

the ones that better represent the abstract feature of interest, but it is important to note that it is possible to 

obtain other types of information using the same walk semantics, thus making the algorithm more 

powerful, enabling the observation of more subtle patterns. 

 

3.7.2. Explicitly defined patterns 

 

This example has the objective of showing that by manually defining the features that suggest the existence 

of specific patterns it is possible to apply the algorithm presented above in Subsection 3.3.1 to obtain 

candidates of groups that present the pattern of interest.  

 

One important pattern to look for in collections of journal articles is of author collaboration. The most 

important feature for author collaboration is of co-authorship: 

 

 { }, , , ,Author wrote Publication writtenBy Author . (3.12) 

 

This single feature was used to define the pattern of interest in the collection of papers in the Anthrax field. 

The results are shown in Table 3-2. By presenting these results to a specialist in the field, it was possible to 

confirm that the results are reasonable, but it was not possible to rate the ranking obtained, a common issue 

when analyzing the results on these databases. 
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Table 3-2 - Results of co-authorship collaboration without preferential connection correction 

 
From To 

Feature 
Value 

Used as 
example? 

1 Klein F Lincoln RE 0.2360 * 
2 Lincoln RE Klein F 0.2360  
3 Mahlandt BG Lincoln RE 0.1798  
4 Lincoln RE Mahlandt BG 0.1798  
5 Leppla SH Klimpel KR 0.1685 * 
6 Klimpel KR Leppla SH 0.1685  
7 Klein F Mahlandt BG 0.1685  
8 Mahlandt BG Klein F 0.1685  
9 Walker JS Klein F 0.1461  
10 Klein F Walker JS 0.1461  
11 Lincoln RE Walker JS 0.1461  
12 Walker JS Lincoln RE 0.1461  
13 Leppla SH Singh Y 0.1236 * 
14 Singh Y Leppla SH 0.1236  
15 Smith H Stanley JL 0.1124 * 
16 Stanley JL Smith H 0.1124  
17 Collier RJ Milne JC 0.1124  
18 Milne JC Collier RJ 0.1124  
19 Mock M Sirard JC 0.1124  
20 Sirard JC Mock M 0.1124  

 

 

The last column of the table will be used in the following subsection, where these elements will be given as 

examples to try to obtain the same results without having explicit knowledge of the feature. 

 

3.7.3. Example-based patterns 

 

Using the same pattern as the previous example, of spotting important authors, instead of manually defining 

a walk semantics of the features of interest, some examples are provided for the system and, by using all 

walk semantics in the ontological connections with maximum length of 4. The examples presented to the 

system were the same ones identified in Table 3-2. The results obtained using this method are shown in 

Table 3-3. 
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Table 3-3 - Results of co-authorship collaboration without preferential connection correction using examples for 

defining patterns 

 
From To 

Feature 
Value 

In Top 
20? 

1 Ivins BE Friedlander AM 0.5385  
2 Lincoln RE Mahlandt BG 0.5667 * 
3 Sirard JC Mock M 0.5677 * 
4 Mock M Sirard JC 0.5704 * 
5 Mahlandt BG Lincoln RE 0.5727 * 
6 Friedlander AM Ivins BE 0.5777  
7 Milne JC Collier RJ 0.5814 * 
8 Mock M Fouet A 0.6033 * 
9 Collier RJ Milne JC 0.6043 * 
10 Klein F Mahlandt BG 0.6113 * 
11 Mahlandt BG Klein F 0.6146  
12 Fouet A Mock M 0.6156  
13 Ivins BE Little SF 0.6172  
14 Klimpel KR Singh Y 0.6234  
15 Singh Y Klimpel KR 0.6264  
16 Little SF Ivins BE 0.6369  
17 Smith H Collier RJ 0.6407  
18 Collier RJ Smith H 0.6704  
19 Smith H Stanley JL 0.6799 * 
20 Friedlander AM Leppla SH 0.6814  

 

The table identifies the cases where the elements in the top 20 results using the example-based approach are 

present in the top 20 of the previous example. This gives a 45% match of the top 20. If these results are 

compared to the top 50 results of the previous example, a 100% match is observed proving that the 

example-based method does provide good results with a reasonably low number of examples. 

 

3.8. Summary 

 

This chapter presented the core method for pattern recognition that is being proposed in this study. The 

method is based on the use of walk semantics as features that are related to the patterns of interest. It is 

possible to define the pattern by direct definition of the walk semantic set possibly with weights; by 

presenting examples to the system; or by a combination of both. The algorithm also provides a method for 

introducing or dealing with database biases that is useful for extracting subtle features in the database by 

defining different weight policies.  
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This chapter also provided relevant discussions about user interface necessary for running the examples and 

analyzing the results obtained graphically and by a ranked table. Improvements were proposed for using 

dimensionality reduction methods for dealing with the curse-of-dimensionality and for dealing with 

syntactic patterns.  

 

Finally, some simple application examples were shown to support the proposed algorithm. These examples 

have enabled the understanding of the way the algorithm works and how important is each of the 

parameters and feature choices given. It also provides verification of the robustness of the example-based 

approach, alleviating the user from hard decisions related to manually defining walk semantics of interest. 

 

However, when implementing the algorithm, two issues were observed: using externally built databases 

and scalability. Databases built by external sources, such as ISI, usually have data structures that are not 

compatible to walk semantics that are easy to understand. Therefore, it is necessary to employ methods for 

transforming the database structure to facilitate the creation of these walk semantics. A method for 

performing this change will be presented next, in Chapter 4. 

 

Scalability is also a very important issue in the algorithm presented in this chapter. Because of its need to 

perform branching in the projections related to each feature of interest, it is necessary to load into memory 

the whole projection for each feature in turn. For features with large walk semantics, the amount of 

memory required is sometimes very large. Moreover, if a large number of walk semantics is used (for 

example, if the user defines an example-based approach in which the maximum length of the ontological 

connections is too large), the time required to calculate each of the features and then obtain the total 

feature, or the distance to the examples is also very large. Chapter 5 proposes a sampling-based method for 

providing a more scalable design, both in memory and time requirements.  
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CHAPTER 4 

Ontology Transformation 

 

4.1. Introduction 

 

This chapter discusses methods for database structure transformation. One of the most important processes 

when defining the requirements of a data processing system is to identify a database structures that are 

informative for the goal sought, simple to decrease the cost in data acquisition and processing, and the cost 

related to maintaining overall system consistency. This process, though, is only applicable when the 

creators of the system are the ones that are acquiring and managing the database. Lately, with the decrease 

in cost for data sharing and the growth of size and quality requirements for the state-of-the-art data 

processing systems, an increasing amount of databases used in large systems is obtained from external 

sources. These specialized data gathering and distribution companies usually have different system 

requirements when defining the database structure, thus usually not following the ideal structure for the 

data processing system, as mentioned above. Therefore, it is not unusual for the first step for most data 

processing systems to be of structure transformation, or ontology transformation. 

 

Methods for ontology transformation, also called ontology mapping, or schema transformation, have been 

around for many years since the initial implementations of database systems. However, they were created 

in order to deal with legacy systems or the integration of multiple databases with different structures and do 

not relate directly to the processing requirements [47, 80, 81]. The lack of connection between these two 

processes in the system is usually due to the inability to define the processing requirements in compatible 

terms as the ontology transformation. Usually an ontology transformation contains source and target 

ontologies and a definition of which are the equivalent elements, and possible transformation functions that 

have to be applied to transform elements from one ontology to another [82]. As for the analysis process, the 
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usual requirements are defined on the features that are being sought for in the database (the queries) and the 

processing to be applied to the result of these queries. Queries are very specific to certain database 

structures and only in special cases it is possible to efficiently translate them from one structure to another 

[83]. Moreover, sometimes the processing to be applied to the result of the queries has to be translated too. 

This translation complexity is usually higher because of the inexistence of general formal methods for 

representing and manipulating the required functions. 

 

Another main difference between the concept of ontology transformation presented here and the ontology 

mapping discussed in the literature is that for this implementation there is no data in the target ontology. 

Therefore, there are no uncertainties about entity matching (the process of defining which entities in one 

database relate to the entities in the other database), which may be the one of the most time and processor-

consuming elements in the process [84].  

 

This chapter is structured as follows. Section 4.2 introduces the ontology transformation algorithm. Section 

4.3 analyzes the use of the ontology transformation to optimize queries in graph-structured databases and 

proposes an automatic transformation method to apply on databases for query optimization. Section 4.4 

presents the user interface created to enable the ontology transformation. Section 4.5 describes some simple 

examples of application of the algorithm in two different datasets. Finally, Section 4.6 presents some 

conclusions obtained from the experimental results of the algorithms presented. 

 

4.2. Ontology Transformation Algorithm 

 

The proposed algorithm for ontology transformation is rooted in two main assumptions to which the 

reasoning was discussed above. 

 

Assumption 1: The objective of the ontology transformation step is to adapt a data structure to analysis or 

processing. There is no interest in explicitly merging two or more databases with different data structures, 
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so there are no requirements for intensive element disambiguation, although some would be necessary in 

some transformations. 

 

Assumption 2: It is easy for users to understand and to be able to provide the interesting walk semantics 

and the equivalent walk semantics on the different ontologies, given a simple and intuitive user interface. 

 

The rationale justifying the proposed algorithm is on deciding and performing the ontology transformation 

in order to employ information that can be easily extracted from databases in other structures. Figure 4-1 

shows an example of two ontology structures for bibliographical analysis. These ontologies were already 

presented in the previous chapter. For completeness of the representation, we will repeat these figures here. 

In the first ontology (Figure 4-1(a)), it is not possible to directly infer patterns that could suggest 

information related to each journal issue, such as special issues. Moreover, as references are treated as 

“codes” and not as papers that could be present in the database, it is impossible to directly perform analysis 

such as journal referencing, or self-referencing. On the other hand, the second ontology enables these kinds 

of analyses. 

  

 (a) (b) 
 

Figure 4-1 - Example of two different ontology structures for the same problem domain (collection of journal 
articles) 

 

An important detail that can be observed in the example on Figure 4-1 is that sometimes elements have to 

be modified in order to generate elements that can, in turn, be related to the elements in the target ontology. 

For example, in the ontology given in Figure 4-1(a), the date is given by a month, a month range, a season, 

or sometimes a day and month, while in Figure 4-1(b), in order to keep homogeneity, all dates contain day, 
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month and year. Therefore, extra information is necessary to be added in order to make this transformation, 

such as an assumption that the publication date is the middle of the given range. As can be seen in this 

simple example, the transformation step is highly problem-dependent and usually requires database 

engineers to generate a good amount of code to enable it. It is reasonable to assume that there is no general 

solution to this problem that can be automatically generated, but an effective algorithm has to take this step 

into account, because it modifies the structure of the initial database considerably. 

 

A high-level view of the proposed transformation system can be seen in Figure 4-2. It contains three 

different processes, source transformation, path transformation, and target element disambiguation. Each of 

these processes will be discussed below in separate. After the analysis of the algorithmic steps, some details 

about the implemented user interface will be given. The construction of the interface is vital to enable the 

applicability of the process. The definition of each of the walk semantic pairs can be a highly time-

consuming and error-prone process if not carefully designed. 

 

 

Figure 4-2 - Overview of proposed transformation process 
 

4.2.1. Source transformation 

 

As mentioned, this first step is focused on performing modifications in a database, when needed, to enable 

the identification of entities and relations that are implicit or not present in the original database structure. 

This process is highly problem dependent and cannot be easily automated. The input of the process is the 

whole database, or a selected group of entities. The output is a modified database with added entities and 

relations. These new entities form a subgraph that is attached to the initial source ontology and is used to 

determine the translation. Therefore, what is required for the analyst programming this transformation is 
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the definition of the ontology of the new information to be incorporated into the database and how this new 

information is connected to the initial data. 

 

For example, when analyzing the ISI database of papers, one common observation is about the change in 

the standards in which the paper authors are assigned a name comparing to the reference authors. Reference 

author names are always capitalized and do not contain any non-letter character (for example, “O’Neil, J” 

becomes “ONEIL J”). In order to enable the matching of paper and reference author names it is necessary 

to transform the paper author names to this “reference author scheme.” It is important to note that the 

opposite, although would be more interesting, is not possible, because the reference author name does not 

contain enough information to do the reverse transformation.  

 

In this case, the input for the transformation function is each paper author name, and the output is the 

modified paper author name connected to the original paper author name. The original name is kept 

because of the additional information it contains. Thus, the new transformed ontology contains one extra 

element and one extra relationship, and this is used to enable the path transformation. 

 

4.2.2. Path transformation 

 

The path transformation step generates the translations of the elements and their properties. It uses pairs of 

equivalent walks generated by the user to define the equivalent elements and populate the elements that do 

not have equivalence determined. The overall algorithm can be seen in Figure 4-3.  

 

It is important to note that, without the initial disambiguation step, the elements that would be present in 

between these two equivalent elements will be duplicated in this step. For example, the transformation in 

Figure 4-1 from a paper’s issue and volume would create two distinct source issue objects. In order to 

enable the merging of these two objects, it is necessary for the user to provide information of whether the 

two virtual elements created are the same. This process, if added to the definition of the equivalent walk 

pair, may decrease the simplicity of the step, thus making the step harder to implement and use. Therefore, 
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function transform_walk(walk_O1, walk_O2) 
for each walk w that agrees with the walk_O1 in ontology O1  
 if starting_vertex(w) does not have equivalent in O2 
  v1 = create equivalent 
 else 
  v1 = existing equivalent 
 end 
 if ending_vertex(w) does not have equivalent in O2 
  v2 = create equivalent 
 else 
  v2 = existing equivalent 
 end 
 if in both vertices there was an equivalent already 
  // Initial Disambiguation Step 

perform inner disambiguation finding the common “abstract” 
type(s) and making them the same. 

 else  
  create elements and properties in between both elements 
 end 
end function  

Figure 4-3 - Pseudo-code for generating the transformation using the equivalent walk pairs 

as a second step after all the equivalent walk pairs are specified, the system identifies all possible 

equivalent virtual elements and displays them to the user who confirms or rejects the equivalence. The 

algorithm in identifying the possible equivalent virtual elements is actually very simple. It is based on 

identifying all virtual elements by getting the elements that never appear at the beginning or end of any 

equivalent walk pairs, and presenting to the users pairs of walk semantics to inquire whether in these walk 

semantics the virtual elements are equivalent. 

 

This is an initial process of disambiguation that is directly related to the virtual elements created that are 

not present in the source ontology. This is a structural disambiguation step, important for completing the 

walk transformation step in order to obtain the actual desired structure. However, sometimes some 

disambiguations are related to the element values, not only the structure. These will be analyzed and dealt 

with in the next subsection. 

 

4.2.3. Target element disambiguation 

 

This final step is called for in order to further disambiguate elements that cannot be disambiguated in the 

previous step. These are disambiguations that are not present in the source ontology, usually related to 
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virtual elements and the elements that uniquely define these elements. Modern ontology representation 

languages add initial support to these kinds of disambiguations by defining functional dependencies and 

cardinality restrictions. An important deficiency that most languages have is that they support only 

functional dependency of single elements, i.e. if a single element is of a certain type, or has a certain value, 

then the element that is connected to it has its value uniquely defined. However, in most cases, a group of 

values determine an element. For example, a source issue is determined by the source it is an instance of, 

the volume number, issue number and date. If only some of these elements match, it is not possible to 

confirm that the virtual elements are equivalent, but it is possible to analyze the probability distribution of 

the equivalence and use this information to help in decision-making. 

 

The proposed algorithm deals with these multi-valued matches and the incomplete matching scheme, where 

only part of the disambiguating elements is present. Each of the cases will be discussed in separate below. 

 

4.2.3.1. Deterministic matching scheme. In this method, all the values that determine an element are 

given. The most direct method for presenting these values is by generating a group of walk semantics that 

connect the virtual element to its determining elements, namely the semantic star, as mentioned in Chapter 

2. All the walk semantics start at the same element, thus making it simple for user to generate it. It is also 

possible to present pre-built walk semantics that connects the virtual element to all equivalent elements 

with short walk semantics (walk semantics of length greater than 2 is usually not related to determining 

elements). 

 

After the definition is given, the algorithm extracts all virtual elements of interest and their referenced 

elements. If a virtual element does not contain one or more of the elements referenced, it is discarded. 

Using a successive sorting method, all elements that have the same values for all elements are identified 

and merged. Merging is based on transferring all relations that used to connect to one of the elements to the 

other, given that this relation was not given in the disambiguating walk semantics, and removing the first 

element from the database. Figure 4-4 depicts this process, in which the elements identified with the dashed 

lines are the matching elements. A merge requires the definition of a direction that specifies which value to 
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keep for elements that are of the same type. In Figure 4-4, the elements marked with X and Y are of the 

same type, but as the merge direction is onto the graph in the left, in the result the Y element is discarded. It 

is important to note that all virtual elements that are referenced in the semantic tree are also merged, 

because in order for the walk semantics to be equivalent, they require equivalence too, as can be seen in the 

circular-shaped element in Figure 4-4. 

 

 
Figure 4-4 - Example of the merging process 

 

4.2.3.2. Incomplete matching scheme. This method can have the same input as the previous method, or 

an expanded input with a larger number of walk semantics. However it does not assume that all the 

elements references must match. Again the values are sorted by the number of matching values and 

displayed to the user. The user then gives a feedback to the method on the actual matches or mismatches. 

This feedback information is used to generate a model of the probability of a match given the matches and 

mismatches of elements. This model is used to rank the possible matches not only by the number of 

matches, but also by the known probability of the quality of the element match being related to the virtual 

element match. 

 

Specifically, the ranking scheme is based on a binomial probability measure, where initially the probability 

is based on the proportion of matches that the algorithm had and then it gets modified based on the 

responses obtained for the same types of matches following the heuristic equation given below. 
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where is the final probability measure used for ranking the type of matching M( )ip M i, α is a heuristic 

parameter that controls the number of observations it takes for the system to base the statistics on the 

observed events rather than the number of elements matched, N is the total number of matches already 

made,  is the ratio of the number of matched elements by the total number of elements, and 

 is the empirical probability obtained from the number of times the user identified a match divided 

by the total number of times the given matched types were observed and presented to the user. 
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The parameter α is mainly defined by the number of actual examples that exist in the database and how 

precise is the initial assumption that it is possible to approximate the match by the ratio of the matching 

values. This assumption may seem, in principle, very problematic. In the case of the disambiguation of 

source issues, suppose the elements that are to be matched to be the volume number, issue number, source 

name, year of publication and date of publication. If the matching elements do not contain the year of 

publication, this may most likely mean that the year of publication was wrong, because the volume usually 

corresponds to this value. On the other hand, if the source is different, most probably these elements are 

different, although they both have only one mismatch. Although with this simple example the assumption 

may seem incorrect, experimental results show that the ease of determination does compensate for these 

small errors. Moreover, a simple increase in the parameter α does make the system converge faster to the 

empirical probability that accounts for these effects. 

 

In the next section, the concept of ontology transformation will be applied for optimizing queries in the 

database. Then, before presenting some applications of the transformation method for increasing the 

efficiency of the feature extraction process and showing some experimental results obtained, the user 

interface that was created for this system will be presented. 

 

 58



4.3. Query Optimization by Transformation 

 

As introduced above, the proposed ontology transformation process can be used to optimize the feature 

extraction process by first transforming the data structure in such a way to minimize the length of the 

interesting walk semantics. Features can be extracted by analyzing the number of different equisemantic 

walks that exist between given two or more elements. This will be covered in more details in the next 

chapter. However, it was noted that the longer the length is, the larger the branching factor will be, thus the 

more the processing requirements will need to calculate the features. In an optimal case, it would be 

interesting to have all interesting walk semantics of unitary distance. However, this process does remove 

important information that could be used for correctly defining the weights of each of the transformed 

connections. In some cases it may be interesting to lower the weight of connections that pass through very 

“popular,” i.e. highly connected, elements because of the lack of actual information that these connections 

provide and the fact that they tend to introduce biases into the analysis, as discussed earlier in subsection 

3.7.1. By erasing the information of the actual path, it is impossible to obtain a weighting scheme.  

 

However, in some cases, walks may not have these kinds of problems. One example when this is observed 

is when there are walks where each element has only a single inbound and a single outbound connection. 

For example, in Figure 4-1(b), the source issue element has only one connection to the source and one 

connection from a publication. Thus, if it would be interesting to obtain features related to connections 

between a publication and a source, an ontology that contained a property that relates the publication 

directly to its source would have its walk semantic length reduced by one. This may seem a small 

reduction, but it may contribute to large difference in processing time, large enough to support the cost of 

the transformation. 

 

It must be noted, though, that this transformation makes the ontology harder for the user to understand. 

Experience has shown that the closer the ontology is from the reality, the easier it is for a user to define the 

walk semantics. In real life publications are contained in source issues that are “periodic instantiations” of a 

source; therefore, it is easier for a user to use this structure. For that reason, it would be interesting to 
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generate a “hidden” ontology structure that is only used for processing purposes. We name this ontology 

the “processing ontology,” while the transformed ontology that is best for the user to define the walk 

semantics is called the “user ontology.” 

 

The construction of the processing ontology is automatic and based on the following simple functional 

dependency: 

 

If each element of type A connects only to a single element from type B that, in turn, connects only 

to a single element of type C, then the C elements are functionally dependent on A, therefore there 

can be a direct connection from A to C.  

 

It is important to observe that most of these dependencies are created by the ontology transformation itself. 

Reducing all functional dependencies of the ontology in Figure 4-1(b) would obtain roughly the same 

elements as in the original ontology in Figure 4-1(a). The only difference is that this process does not 

remove the virtual elements, because they may be interesting for some of the analysis. 

 

After the dependent elements were connected, the functional dependency and the transformation are 

recorded and used as a macro to transform the user’s walk semantics. For example, if there is a 

transformation that generated a connection between A  C where only the connection through B was 

available (A  B  C), now every time that the user inputs a walk semantics that contains the transformed 

sequence, the system automatically transforms this part of the walk semantics into a simplified version. 

 

4.4. User Interface 

 

As discussed in Chapter 1, the implementation of this part of the system is targeted to being a proof-of-

concept study, and will not make use of highly graphical interaction methods that could be beneficial for 

the user experience, but does not add much to the information of whether the system would be applicable. 
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The proposed user interface for this process contains three main screens. The first one loads the databases 

and defines the interesting equivalent walk semantics pairs and can be seen in Figure 4-5. The second 

screen, shown in Figure 4-6, is called when the definition of walk semantics is done and the software calls 

the algorithm to analyze possible disambiguation of the virtual elements. Finally, in Figure 4-7 the interface 

for performing the disambiguation can be seen. This is a very simple interface and would definitely benefit 

greatly by adding a visual method to observe the disambiguation candidates. However, it has proved to be 

efficient for more experienced users, because they can easily observe, just using few values, whether the 

elements should be merged or not. 

 

 
Figure 4-5 - Example of interface for building the equivalent walk semantics 

 

 
Figure 4-6 - Example of interface for confirming merge of virtual elements 
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Figure 4-7 - Example of interface for doing the disambiguation of database elements 

 

4.5. Sample Application Examples 

 

The proposed process was applied to two different datasets with different types of transformation 

requirements, an earthquake events dataset from the U.S. Geological Survey database, and a scientific 

papers dataset from ISI Web of Science database. The simplified versions of these databases are presented 

in Figures 4-8 and 4-9, respectively. The complete version of these ontologies is presented in the Appendix 

I. 

 

4.5.1. Earthquake event analysis 

 

Following arguments made in [85], the information about the depth, position, time and magnitude of the 

earthquakes is not very efficient to use, and is not the elements that are being sought for when analyzing 

this kind of databases. What is interesting, on the other hand, is to identify the relations between these 

elements and the events. For example, it is inspiring to identify similarities between close-by events, in 

space and time. Moreover, it is interesting to analyze event magnitudes grouped by certain ranges such as 

the Modified Mercalli Intensity Scale [86], or any heuristic fuzzy interpretation of the earthquake 

magnitudes. For this example, five magnitude levels were used: low (1-3), medium-low (3-5), medium (5-

7), high (7-9), and very-high (9 and above). Similarly the depth information was divided into shallow, 

medium and deep earthquakes. In summary, the desired transformed ontology can be seen in Figure 4-8. 

The original ontology does not contain the fuzzy relations shown in bold, only the numerical values. 
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Figure 4-8 - Simplified graphical representation of ontology structure of an earthquake event database

 

In order to perform this transformation, the main work is done by the transformation functions that 

calculate the distances and time displacements for generating the close-by relation, and then an aggregation 

function to group the magnitudes. The generated ontology, as depicted in Figure 4-8, does not contain any 

structural changes besides the ones generated by the function changes, therefore there is no need to 

generate complex equivalent walk semantics. All generated equivalent walk semantics contain similar 

elements, only varying the namespace. No disambiguation process is required. 

 

One simple example of the application of such transformation is on identification of the position of active 

tectonic regions. This can be performed by analyzing the following walk semantics: 

 

{ , , , , ,
, , , , }

Location hasEvent Event inLocation Location closeBy
Location hasEvent Event inLocation Location

,
. 

 

There are three main concepts behind the choice of this walk semantics: 1) it is interesting to first identify a 

place that has a large number of events connected to it. It is important to note, though, that because the 

locations are given in terms of coordinates of the center of the earthquake, there are very few actual 

repeated locations; 2) tectonic regions are areas in which a large number of earthquakes are observed 
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throughout time mainly related to a position where there is collision between tectonic plates; 3) the 

presence of a large number of earthquakes in a location near by the first highly active location is another 

important indication of highly active regions.  

 

The results from the application of this walk semantics can be seen in Table 4-1, after removing the 

redundant cases (where both locations are the same and where the locations are just switched). It shows the 

number of equisemantic walks, the coordinates and a manual description of the place. By simple 

inspection, it can be observed that these is a large bias toward a specific region in the Arabian Sea because 

the database has 236 events registered to that position (50.20, 12.50), where most of these events occurred 

between September and November 2000. This shows that for this high detail in the position of earthquakes, 

the use of the given walk semantics may not be appropriate as identified before. 

 

Table 4-1 - Top 10 results of the analysis of active earthquake regions 
 Location 1 Location 2  
Rank Latitude Longitude Place Latitude Longitude Place Count 

1 50.20 12.50 Arabian Sea 50.20 12.40 Arabian Sea 55,696 
2 50.20 12.50 Arabian Sea 46.06 14.77 Arabian Sea 13,924 
3 50.20 12.50 Arabian Sea 46.05 14.79 Arabian Sea 6,844 
4 50.20 12.50 Arabian Sea 46.05 14.78 Arabian Sea 4,956 
5 46.22 -122.19 California 46.21 -122.18 California 4,225 
6 50.20 12.50 Arabian Sea 50.22 12.44 Arabian Sea 4,030 
7 46.22 -122.18 California 46.21 -122.18 California 3,900 
8 46.07 14.77 Yemen 50.20 12.50 Arabian Sea 3,304 
9 50.20 12.50 Arabian Sea 50.22 12.43 Arabian Sea 2,832 

10 44.26 8.21 Ethiopia 44.26 8.20 Ethiopia 2,795 
 

A simple modification of the database was then proposed. Instead of employing all events, something that 

has shown to bias the results to positions where there are better equipments for spotting very weak 

earthquakes, only the events which the magnitude of the earthquake is mild or higher (5 degrees or higher) 

were considered. This decreases the number of events of interest to 48,725. A second modification was that 

all positions were rounded to the closest integer. This decreases the precision of the measurements making 

it more possible for events to be in the same position. The results obtained after this modification in the 

mapping methods is shown in Table 4-2 after removing the redundant elements. 
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Table 4-2 - Top 10 results of the analysis of active earthquake regions using only major earthquakes and integer 
positions 

 Location 1 Location 2  
Rank Latitude Longitude Place Latitude Longitude Place Count 

1 -5 153 Papua New 
Guinea 

-7 155 Papua New 
Guinea 

65,084 

2 -5 153 Papua New 
Guinea 

-5 152 Papua New 
Guinea 

62,965 

3 2 127 Indonesia 1 126 Indonesia 51,912 
4 -6 155 Papua New 

Guinea 
-5 153 Papua New 

Guinea 
47,278 

5 -7 155 Papua New 
Guinea 

-5 153 Papua New 
Guinea 

43,460 

6 -21 -179 Fiji -18 -179 Fiji 42,354 
7 -7 156 Papua New 

Guinea 
-5 153 Papua New 

Guinea 
42,059 

8 -18 -179 Fiji -18 -178 Fiji 41,625 
9 44 149 Japan 44 148 Japan 40,044 

10 6 126 Philippines 2 127 Philippines 39,552 
 

This test shows a major difference in the results obtained depending on the pre-processing choices made. 

For this new database, the walk semantics chosen is more meaningful, because a location is not that 

sensitive to location accuracy and sensitivity of earthquake spotting equipment. It is easy to see, from these 

results, that the islands in the west of the Pacific “Ring of Fire” are highly active in moderate to large 

earthquake activity. More detailed analysis of highly active earthquake regions will be given in Section 7.2. 

 

4.5.2. Scientific papers database 

 

ISI’s scientific papers database is centered on the information surrounding a journal paper. As a direct 

consequence of this focus, by the way the database is presented it is a great challenge to obtain information 

about specific journal issues, for instance, because this information is not contained as a single entity in the 

database. 

 

In order to alleviate this problem and to also enable the treatment of some of the references as papers 

existing in the database, the ontology structure presented in Figure 4-1(b) was devised. However, because 

of the creation of new elements and the special treatment to references, the ontology transformation process 
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requires the full use of all proposed processes. Each of the processes will be explained in more details 

below. 

 

4.5.2.1. Transformation functions. The chosen transformation functions have to deal with a number of 

details in the ISI database. 

 

Paper author names are stored using capital letters only for the first letter of the family name (or also for 

middle letters when the name is compound) and other graphical symbols, e.g., “DeGould, J,” or “O’Reilly, 

TB.” At the same time, reference author names are all capitalized and do not contain non-letter characters, 

e.g. “DEGOULD J” or “OREILLY TB.” This small difference creates an extra complication, because all 

paper author names, in order to match to their reference counterparts, they have to be translated into the 

way the references are stored. The inverse transformation is not possible, because there is information loss 

in the process of generating reference author names. 

 

References contain only the first author, the reference source, the volume number, the beginning page 

number and the year. All this information is actually obtained only on a comma separated string that has to 

be parsed before the analysis. Moreover, it is very common for some of these values to be incorrect, in 

particular volume numbers and page numbers. It is necessary to do a statistical analysis on these values in 

order to enable disambiguation with the papers in the dataset. 

 

The source names on the references are abbreviated following a scheme that is contained in a different 

database. This has to be added to the original data structure by means of another transformation function. 

However, not all reference source names are present in this extra abbreviation database. Especially when 

the source is a book name, this book is abbreviated but the abbreviation does not appear in the database. 

Therefore, as in the first transformation, the inverse transformation is not feasible. 

 

The dates are divided into two different elements, the year and a date element that may contain a day and 

month, only a month, a month range or a season. It would be useful, in order to facilitate analysis, to join 
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this information in a single element that would contain information about the date range (when the specific 

data is not known). 

 

The following transformation functions were devised to deal with the issues listed: 

 

• referencize-names: generates the name in the reference standard (all capital letters and with no 

non-letter characters) and connects to the original name. 

• split-reference: parses the reference string into the single elements (first author name, source in 

reference format, volume number, starting page number and year). 

• referencize-sources: obtains and attach the abbreviations from the source names. 

• specify-date: combines the date elements into a single date range object that contains a 

standardized information (not using non-specific definitions such as seasons) about the date of 

publication. 

 

After these four functions are applied, the generation of the equivalent semantic pairs follows. This will be 

discusses in the next section. 

 

4.5.2.2. Walk transformation. The generation of the equivalent walk semantic pairs is straightforward in 

most of the cases. It was seen that the most efficient method was to try and keep all walk semantics as short 

as possible (in this case, always a pair of elements in the source side worked in all cases). As for the hidden 

element disambiguation, in all cases it was chosen to merge the elements, because in no case there is a 

doubt whether the elements should be treated separately or not. Table 4-3 shows a sample of interesting 

equivalent walk semantic pairs. The source elements in italics are the ones that were created by the 

transformation functions described in Subsection 4.2.1. The target elements on italics are the virtual 

elements created in the ontology. 
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Table 4-3 - Example of some interesting equivalent walk semantic pairs 
Source Walk Semantics Target Walk Semantics 

{Paper, hasIssue, Issue} {Paper, ofSourceIssue, SourceIssue, hasIssue, 
Issue} 

{Paper, hasSource, Source} {Paper, ofSourceIssue, SourceIssue, ofSource, 
Source, hasName, Name} 

{Paper, hasReference, Reference} {Paper, cites, Reference} 
{Reference, hasFirstAuthor, FirstAuthorName} {Reference, hasFirstAuthor, Author, 

hasReferenceName, ReferenceName} 
{Reference, hasSource, ReferenceSource} {Reference, ofSourceIssue, SourceIssue, ofSource, 

Source, hasReferenceName, ReferenceName} 
 

The source in the target ontology became a virtual element because it is more general to code a name entity 

as a string than to accept the transformation of a physical element into a string value. This concept was also 

used with authors and author names. The only issue about this transformation is that, as expected, the 

average length of the paths increased with this transformation, because the target structure is larger. On the 

other hand, this new structure is more informative and allows for the definition of more interesting features. 

 

4.5.2.3. Target element disambiguation. There are two main elements that should be disambiguated: the 

authors and paper-reference. For the authors, it is necessary to match the authors that have the same 

reference name. It is assumed, for this application that having the same reference name is a deterministic 

property to disambiguate authors. This assumption may not be completely valid when dealing with large 

and highly heterogeneous databases, but for the scope of this study there will not be any considerations 

regarding these concerns. 

 

The disambiguation semantic star is actually a single walk semantics: Author  hasReferenceName  

ReferenceName. It is important to note that this disambiguation also works for disambiguating paper 

authors, because the transformation function creates the reference name for all authors and it is assumed 

that this process, although it does result in information loss, does not cause problems in disambiguating the 

names for the case under analysis. 

 

The disambiguation of papers and references is a little bit more complicated. The matching has to be done 

on a number of elements that may be reasonably distant from the disambiguating element (the publication). 
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A second assumption has to be made here. It is assumed that if a reference matches the first author of a 

paper, the abbreviated source name, the year of publication, the beginning page and the volume number, 

they are surely the same paper. This assumption is very reasonable. Experience with a number of datasets 

never presented an exception to this rule. Therefore, the semantic star for papers and references 

disambiguation is given in Table 4-4. 

 

Table 4-4 - Semantic star definition for disambiguation of papers and references 
Walk semantics 

{Publication, hasFirstAuthor, Author} 
{Publication, hasSourceIssue, SourceIssue, inDate, Date, inYear, Year} 
{Publication, hasStartingPage, StartingPage} 
{Publication, hasSourceIssue, SourceIssue, ofSource, Source, hasReferenceAbbreviation, 

ReferenceAbbreviation} 
{Publication, hasSourceIssue, SourceIssue, ofVolume, Volume} 

 

It is important to note that in this case if there were repeated papers acquired in the dataset, because of a 

data gathering mistake, they would be disambiguated in this step too. The disambiguation step, due to the 

proposed algorithm, would merge the elements of the whole walk semantics presented in the semantic star, 

thus combining the source issue and source elements. The author elements do not need to be disambiguated 

because of the previous disambiguation step. 

 

After this deterministic merging has been performed, it is interesting to analyze cases where only some of 

the values of the paper-reference disambiguation match. Based on the proposed ranking method, the 

candidate disambiguation elements were presented to the user. From the results of the feedback from the 

user, a final probability for merging based on the type of matches was obtained. These probabilities for the 

cases where at most 2 elements did not match are shown in Table 4-4 for a dataset composed of 24,858 

publications in the Evolutionary Computation field, in which 2,568 are papers (i.e., in the ISI database as 

papers and not only as references). In order to obtain the statistics, a sample of 20 pairs of each of the cases 

were obtained and presented to the user. Most of these results are expected, such as the fact that a volume 

number and source name are enough to define the year, as well as the source name and year are enough to 

define the volume number. When there is a high merge probability, such as non-matching first author 

name, or year, after presenting all 20 examples to the user, the system could already assume that this 
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disambiguation could be done automatically for all other cases without adding much error to the database. 

However, the results showing very similar probabilities for both outcomes have to be either analyzed using 

possibly other elements, not only the five elements shown here (when other elements are available – in this 

case the only information obtained for the references are these five elements), or decided manually. 

 

From the number of cases observed in this reasonably sized dataset, it would be necessary for the user to 

manually go through a large number of cases to ensure a low error in the disambiguation process for the 

database. However, this is originated from the nature of the database, due to the large amount of mistakes 

in the references. The most common mistakes observed are: wrong page number, volume numbers, year of 

publication, spelling of the author’s name, registering second authors as first authors, switching the first 

and last name of authors, not registering middle initials of author’s names, and the use of different 

abbreviations for reference sources. A large number of cases were identified in which the author name and 

page numbers are different is due to multiple publications in the database from the same source issue (for 

example, papers in the proceedings of large evolutionary computation conferences receive a large amount 

of references for a number of different papers). 

 

In summary of all the experimental results presented here, it can be concluded that the proposed method 

can be applied for both simple transformations, such as the one of the earthquake dataset, or on more 

complex problems, in which there are a number of element disambiguation concerns that are not present in 

the original dataset. The proposed transformation of the scientific papers dataset is a good example of this 

later case. Both transformations directly present some interesting aspects of the databases. At the 

earthquake database, for instance, by applying the transformation it was observed that a point location 

(defined by a single pair of latitude and longitude) is not very effective to use for defining areas of high 

earthquake occurrences, because of artifacts created by single positions in which a large sequence of events 

were observed in a short period of time. As for the scientific papers dataset, by observing the 

disambiguation patterns it was possible to have a better insight on the common mistakes that exist in the 

database. In some cases, it is possible to feed the mistakes back to the data acquisition system to facilitate 

the improvement of the initial database. 
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4.6. Summary 

 

In order to deal with the common need to transform the ontology of databases for specific use, this chapter 

proposes a method based on the translation of the walk semantics of the database. It was argued that this 

process is more efficient and less time-consuming for the user to generate, and it contains enough 

information to perform element disambiguation, a very important operation usually needed after ontology 

transformations. 

 

The proposed algorithm is efficient and of easy implementation. The ease of defining walk semantics 

increases the simplicity of the user interface required to generate the needed information for the process, 

namely the equivalent walk semantic pairs and the equivalent virtual elements. It was demonstrated that the 

disambiguation most of the times is very simple, but can also require extensive manual work if there are 

large problems in the database, such as when using a dataset of scientific papers and references. At the 

same time, for simple transformations such as the one exemplified with the earthquake dataset, the whole 

process is very simple and provides a transformation that is easy to understand and creates a structure that 

is more efficient to use for many applications. 

 

The implementation demonstrated here was a simple proof-of-concept to enable the understanding of the 

process and to assure its effectiveness. However, there are some elements that could still be improved upon, 

such as a more natural analysis of the disambiguation. In the disambiguation process, sometimes numerical 

elements could be essential. For example, if there are three publications in the database that are being 

disambiguated, A, B and C, where A has a publication year of 2000, B of 1999 and C of 1990, there is a 

greater chance that A and B are equivalent than A and C or B and C. Also the knowledge of common 

aliases for certain sources can also be of great use to decrease the amount of manual work required in this 

step. For example, if the software learned from observation that publications with a source “T EVOL 

COMPUT” always matches with publications with source “TRANS EVOLUT COMP,” the next time that 

this is observed in the database it may not need to present it to the user. 
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Overall, the algorithms and processes presented here are important steps toward increasing the ability for 

database users to effectively employ databases from external sources. By successfully applying the 

proposed processes, users are alleviated from the tedious and time-consuming programming usually 

required to transform the data into a usable and efficient form. Moreover, by being able to efficiently 

examine the data in different structures for regularities and disambiguation, a better insight in the database 

contents and possible shortcomings from its use can be acquired. Finally, by employing the concepts 

present in the proposed algorithm, automatic and transparent modifications can be added to the database so 

that it would improve the efficiency of the feature extraction process. 

 

The next chapter will analyze another important issue when trying to perform the feature extraction, 

namely the scalability of the method, especially when dealing with memory constraints.  
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CHAPTER 5 

Approximating Features by Sampling 

 

5.1. Introduction 

 

As mentioned earlier, the algorithm presented in this document suffers greatly with scalability. This is a 

common issue reported in the literature of algorithms dealing with graph-structured databases in general 

[16]. The solution that is most deemed as natural to alleviate this deficiency is by employing methods that 

can be implemented in distributed and parallel systems [85, 87]. In this study a new approach to this 

problem is taken: sampling. It is based on the assumption that by observing just part of the total population, 

it is possible to infer what the general behavior of the total population is.  

 

Some applications of sampling for social network characterization were reported in the literature [88, 89], 

as well as for analysis of large databases in search for association rules [90-92]. However, in the case of 

graph-structured databases, the use of this procedure is not yet fully explored. These databases present 

some interesting properties that might cause sampling to be highly inefficient. The main source for this 

possible inefficiency is the high branching factors caused by highly skewed connection distribution and 

positive correlation between the degrees from the various partitions. This inefficiency will be better 

explored in Section 5.4. 

 

This chapter proposed two algorithms for performing sampling: naïve sampling (N-S) and evolutionary-

algorithm sampling (EA-S). The first algorithm will be used as the basis for the sampling analysis because 

its behavior is more predictable and it yields optimal sampling results asymptotically. The second algorithm 

was developed to make use of simple heuristics to speed up convergence of the elements with higher 

feature values. In most cases, the main goal is to identify and rank these elements, while the elements of 
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low feature values can be under-sampled as the inherent noise of the database renders analysis of these 

elements unusable. 

 

The remaining of this chapter is organized in six sections. Section 5.2 briefly presents the concept of 

random sampling in graph-structured databases used throughout the methods discussed in the chapter. 

Section 5.3 presents the naïve sampling approach and highlights the cases when the use of this method is 

not very efficient. Section 5.4 analyzes some well-known features of graph-structured databases, especially 

when they are cases of complex networks. Section 5.5 proposes the evolutionary algorithm sampling 

approach. Section 5.6 presents a couple of experimental results and Section 5.7 discusses the conclusions 

that can be taken from the methods developed in the chapter. 

 

5.2. Sampling for Approximating Structural Features 

 

As mentioned before, sampling is a well-known method for approximating real-world signals or elements 

when it is impossible, due to physical or cost constraints, to use the whole information in the system. In all 

sampling systems, the most important parameter to define is the amount of sampling that should be taken, 

or the sampling rate. In order to derive the “optimal” sampling frequency, first it is necessary to define 

what is sampling in the context of structural feature extraction. In this direction, two different sampling 

approaches are proposed and analyzed below, the start-finish and the start-path-finish approaches. 

 

5.2.1. The start-finish approach 

 

As explained in previous chapters, when performing the structural feature extraction, the elements and 

property types to be traversed during a walk are defined. The most important elements of this walk are the 

starting and finishing elements, because the walk defines a connection between them. Therefore, sampling 

can be performed by choosing a starting element of the starting element type and performing a random 

walk that follows the feature of interest and then returning to the finishing element. 
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The random walk procedure is defined as a sequence of random selections by a “walker” of which out-edge 

to traverse. As the sampling objective is to employ the least amount of memory and approximate the 

feature values, each out-edge has equal probability of being chosen. For example, if a simple walk of length 

1 is performed where there are 4 out-edges of the initial vertex, each output vertex would be traversed with 

a 25% chance. 

 

One first problem that is observed when performing this kind of sampling is that what is interesting is the 

amount of different walks that connect two elements (the size of the equisemantic walks set). This method 

does not offer any information to assist in determining if two distinct samples that start and end at the same 

elements are distinct or not. Figure 5-1 shows a very simple example how this lack of information can 

create artifacts when only using the start-finish sampling approach. In the figure, Ps is the probability of 

sampling and F is the actual feature value. Note that for this method to work, it is necessary that the values 

of Ps and F to be proportional, which does not happen in this simple example.

 

 

Figure 5-1 - Example of artifacts caused by start-finish sampling 
 

This approach contains the least information possible, and uses the least amount of memory to run. On the 

other hand, the aforementioned artifacts created can be very problematic in most datasets, because even 

with a very large number of samples, the results obtained would not reflect the actual value of the feature. 

This observation led to the need of incorporating information about the path and the creation of the start-

path-finish sampling procedure. 
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5.2.2. The start-path-finish sampling procedure 

 

In this method, besides the output of the walk, the random walk method also returns a unique identifier of 

the path traversed. This unique identifier can be the sequence of the index of the out edge chosen (if they 

are indexed), the labels of the elements traversed, or even a hashing function that maps these values to 

another domain making it challenging to reconstruct the whole path (in case where the elements inside the 

network should not be made identifiable to the user). In this case, there will not be any undesired artifact in 

the sampling. On the other hand, it will be necessary to maintain a table of all the paths traversed and this 

table has to be checked every time there is an input-output match to see if the path was not sampled before. 

This extra processing and information stored can lead to an undesired increase in the cost of the sampling, 

but it does not require any extra memory use, because this information can be stored in disk and is not 

expected to be highly accessed even for large networks. 

 

This method still uses equal probability for each out-edges at each walk step. It will be shown below that 

adding information about the number of choices that have to be made in the remaining part of the walk to 

each out-edge would help greatly on decreasing the amount of samples required. However, this additional 

information is highly costly in the amount of memory needed to store it. As the objective of the proposed 

sampling method is to decrease the memory requirements, this modification will not be implemented, only 

analyzed in the following section, where the needed amount of samples for obtaining a good approximation 

is calculated. 

 

5.3. Naïve Sampling Policy 

 

When analyzing the process of sampling, one important concept is presented: the sampling discovery rate. 

Sampling discovery rate is the rate in which the sampling mechanism is able to discover similar walks and, 

thus, approximate the structural feature value. Because of the nature of the random walk defined above, it is 

only possible to determine a probability measure that all paths have been visited. This probability measure 
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is directly related to the maximum branching factor, i.e. the walk in which the product of the number of 

out-edges in each step is maximal, bmax. 
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where P(vi) is the probability that all vertices of vi were sampled, also called the probability of complete 

traversal, and n(vi) is the number of times the vertex vi was sampled. This equation comes directly from the 

composite binomial distribution with probability ( )max

1
i

q b v= . 

 

With this probability measure it is possible to define a simple policy for sampling that has the objective of 

stepwise increasing this probability of sampling throughout the whole dataset. The algorithm, hereby called 

naïve sampling algorithm, is presented in pseudo-code in Table 5-1. It is important to note that without 

sampling it is impossible to determine the value of the maximum branch factor. While sampling there is a 

chance that the sampling path will pass through the maximum branching factor path. However, until all 

paths have been traversed it is impossible to correctly determine this value. As the sampling of all paths 

requires, in theory, infinite time, the approximation of the maximum branching factor to the currently 

observed maximum branch factor is used. 

 

Table 5-1 – Pseudo-code for Naïve sampling policy 

Initialize bmax by sampling all vertices N_init times 
Calculate the P(vi) for all vertices 
While (min(P(vi)) < Threshold) 
 Get the vertex vi with the smallest P(vi) 
 Sample the vertex vi N_samp times 
 Check if the bmax has to be updated 
 Update P(vi) 
End While 
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Another observation that has to be made is that there is one case in which there is no need for sampling 

more than once, when the maximum branching factor is 1, i.e. the random walk procedure does not have to 

make any choices. In all other cases, it is necessary to perform infinite number of samples to ensure that all 

paths have been traversed. 

 

Experimental results of applying this method have shown that the rate of increase of the traversing 

probability is very low, as can be seen in Figure 5-2. This figure was obtained when performing sampling 

in the Anthrax dataset for the author bibliographic coupling feature (more information about this dataset 

and the features that can be extracted can be found in Section 7.1), a 5-partite case. This slow convergence 

has led to the need for a new algorithm, presented in Section 5.5. The large amount of spikes downwards in 

the convergence is caused by the discovery of a new path with a higher branching factor, therefore 

decreasing the probability of complete traversal. As the number of samples for each step of the algorithm is 

Nsamp = 103, and the total number of steps displayed here are 105, the total number of samples that brought 

the approximated minimum complete traversal probability to approximately 3% is of 108 samples. This is a 

very large number of samples for such coverage of this reasonably small network (more details about the 

network used can be found in Section 7.1). 

 

 

Figure 5-2 - Behavior of the convergence of the minimum branching probability for a real-world database 
(Anthrax papers database). Ninit = 1,000 and Nsamp = 1,000. 
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One of the most important aspects for the success of the sampling method is the maximum branching factor 

that a network possessed and the amount of paths with large branching factors. This aspect will be analyzed 

in the following section, relating this feature with the nature of the database. 

 

5.4. Branching Factor in Real-World Databases 

 

Real-world graph-structured databases usually are instances of complex networks, as discussed in Section 

1.3. Because of the highly varying degree throughout a complex network, the branching factor is also 

highly varying, usually being very low for most of the walks, but very high for a few cases. However, as 

explained above, the decisive factor for memory requirements for the processing of graph-structured 

databases is the maximum branching factor. As for sampling, the lower the number of highly branching 

vertices is, the more efficient the sampling process will be. This section will first analyze the branching 

factor behavior using theoretical distributions of the degree probabilities. Later in the section, empirical 

observations will be made to compare to the expected theoretical values. 

 

5.4.1. Branching factor analysis of graph models 

 

Reviewing the concepts presented in Section 1.3, in complex network theory, it is common to model the 

distribution of the degree of the vertices by a Zeta distribution [40-42, 93]. The Zeta distribution, also 

called discrete Pareto distribution, is defined as [31]: 
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where P(k) is the probability of the given vertex to have degree k, γ is the Zeta distribution parameter and 

ζ(γ) is the Riemann zeta function that has the objective of normalizing the probability distribution. 
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When combining N partitions of preferentially connected vertices, the closed-form expression of the 

probability distribution of the branching factor becomes hard to determine, because it is directly related to 

the factorization of the final branching factor b: 
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where ki is the degree of partition i, and γi is the Zeta distribution parameter for the partition i. It is 

important to note that Equation (5.3) assumes independence between partitions. This actual independence is 

not observed in real-world problems, but it is assumed in this part of the analysis for simplification 

purposes. Section 4.2. will present an empirical analysis of this dependency and its consequence. 

 

The degree distribution of a walk of length 1 is given in Figure 5-3 for γ = 2.0. For a walk of length 4 (4 

partitions) and using the same parameter γ = 2.0 for all paritions, the degree distribution is given in Figure 

5-4. Note that the latter distribution is very steep, thus it is very difficult to observe anything when plotting 

the distribution, only a very large peak at 0 and a long and shallow tail. 

 

 

Figure 5-3 - Sample Zeta distribution for single partition, with γ = 2.0 
 

 80



 

Figure 5-4 - Sample branching factor distribution of 4 parititions with degrees following Zeta distribution with 
parameter γ = 2.0 

 

In order to enable the understanding of the effects of Zeta-distributed degree distributions, it is important to 

compare these distributions with a classic randomly connected network. In this case, the degree distribution 

follows a binomial distribution [94]: 
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where Ni is the number of edges in partition i, and pi is the probability of connection when the network is 

being formed for partition i. Figure 5-5 shows the distribution of the degree for a single partition when p = 

0.4 and N = 50. Following the same procedure when combining partitions to obtain the branching factor, 

the closed-form distribution of this branching factor is also difficult to obtain: 
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Figure 5-5 - Sample degree distribution of single randomly connected partition with p = 0.4 and N = 50 
 
 

The plot of the sample distribution for 4 partitions of 50 edges each and pi = 0.4 is given in Figure 5-6. It is 

important to note that the derivation of this combined probability distribution also assumes independence 

among the partitions. Visual inspection for comparing both distributions shows that the Zeta-distributed 

partitions present a much higher level of low branching factors. However, when analyzing the width of the 

tail of the distribution, one observes that the Zeta-distributed network contains a much larger amount of 

elements with high branching factors than the randomly connected network. The 99th percentile of the 

branching factor for the Zeta-distributed network is at 21,021, while for the randomly distributed network it 

is at 14,000. One percent of the vertices for a large network can be a very large number of vertices. Even 

with the fact that for large branching factors the amount increased in the number of samples required to 

obtain the same probability of complete traversal is linear with the increase on the maximum branching 

factor: 
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In these equations, n′(vi) is the number of samples made after increasing the branching factor by the factor 

α. 

 

Because of the large amount of vertices with high branching factors in the simple Zeta distributed 

networks, these are significantly more costly to deal with. 

 

Figure 5-6 - Sample branching factor distribution of randomly connected 4-partite network with p = 0.4 and N = 
50 

 

In order to observe the tail of the Zeta distribution, Figure 5-7 shows the same distribution as Figure 5-4 but 

using a log-log scale. In both Figures 5-6 and 5-7 it is interesting to observe a very large amount of 

discontinuities in the distribution. This is due to factorization problem. For example, for the randomly 

connected networks, the maximum degree acceptable is the size of the other partition. Therefore, for the 

given example where all partitions have 50 vertices, the maximum degree for each partition is 50, thus all

  

Figure 5-7 - Log-log plot of the branching function probability distribution for Zeta-distributed partitions 
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possible branching factors for the whole network has to be a factor of three numbers between 1 and 50. The 

branching factor can never be a prime number of value greater than 50 (51, for example). The same is 

observed on the Zeta-distributed case, although the Zeta distribution assumes infinitely large partitions. 

 

5.5. Real-World Examples of Branching Factors 

 

As mentioned before, in actual databases, the distributions do not follow exactly what was shown above. 

There are actually two important factors that contribute to this difference: 1) the empirical distributions do 

not always follow a well-known theoretical distribution function [93]; 2) the assumption of independence 

between the degrees of the vertices in each partition is not necessarily true. This section will concentrate on 

the second factor; because if proven, it can be exploited for improving the sampling procedure.  

 

Figures 5-8 and 5-9 respectively show some examples of the empirical distribution of branching factors for 

two different features: the determination of important earthquakes in the earthquake database (more details 

about this dataset is presented in Section 7.2) and the identification of important authors in a journal paper 

database containing articles about Anthrax research (see Section 7.1 for details about the dataset). 

 

Figure 5-8 - Empirical probability distribution of the branching factor for the Anthrax dataset for the author 
bibliographic coupling feature 

 

 84



 

Figure 5-9 - Empirical probability distribution of the branching factor for the earthquake dataset for the active 
earthquake areas 

 

When analyzing a database with earthquake events with structure given in Figure 4-8 (and in Appendix I-

4), it is possible to define a single walk semantics to identify areas with high incidence of earthquake 

events. This walk semantics is shown in Figure 5-10. In this case the area is defined by the pair of 

locations. 

 

 

Figure 5-10 - Walk semantics for identification of active earthquake areas 
 

The feature of interest when determining the important authors in a journal database is directly related to 

the amount of citations that papers written by this person receives. This can be translated into the walk 

semantics shown in Figure 5-11.  
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Figure 5-11 - Walk to represent important authors in a journal database 
 

None of these distributions visually resembles the theoretical distributions observed in Section 5.4. It is 

interesting to observe the quantiles of these distributions. Table 5-2 presents the 0.95, 0.99 and 0.999 

quantiles of these empirical distributions. 

 

Table 5-2 - Quantiles of the empirical distributions 
 Databases 

Quantile Earthquake areas Important authors 
0.95 10,340 520,659 
0.99 17,192 1,489,860 

0.999 20,085 3,747,612 
 

This table shows that the branching factor of earthquake events is degrees of magnitude lower than the ones 

observed in the journal database. This is expected, because most degree distributions in this database are 

very simple. For example, all events happen in only one position. Also the number of close-by of a position 

is limited by the threshold definition of what can be a close-by element. Therefore, it requires fewer 

samples for obtaining a good approximation of the feature values, as it is going to be shown in the next 

section. On the other hand, there is still a positive correlation between the number of events in a position 

and the number of events in the neighboring position. 

 

In order to test if an increased number of high branching values is caused by a dependency between the 

degree of the vertices in the partitions, i.e. if vertices of high degree tend to connect to vertices of higher 

degree in the other partition, the Pearson’s r test was used [95]. Table 5-3 shows the results of the 

correlation between some neighboring partitions in both datasets. The collection of journal papers in the 

Anthrax field presents a medium positive correlation between the partitions tests (Authors - Publications), 

while the earthquake dataset presents only a very low correlation. The correlation between non-neighboring 

partitions is not that straight-forward to calculate, because it has to consider possible repeated connections 
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as new samples for the calculation of the correlation coefficient. However, as the neighboring partitions 

already show positive correlation, it is safe to assume that the second level correlations will be positive too. 

Thus, this increases the number of high branching paths, as observed in the empirical distributions. 

 

Table 5-3 - Pearson's r correlation coefficient between partitions for Anthrax and earthquake datasets 
Source Pearson’s r 

Anthrax – between Author (wrote) and Publication (citedBy) 0.352 
Earthquake – between Location (hasEvent) and Location (closeBy) 0.032 

 

 

This correlation characteristic of the databases can be employed for improving the sampling efficiency. If 

one vertex was sampled and seem to contain a high feature values, its neighboring vertices, i.e., vertices 

that share common intermediary vertices, also will have the tendency to have high feature values. The 

opposite is also valid: vertices with low feature values will have neighbors that have low feature values. 

Based on these observations, an evolutionary algorithm approach was devised to make use of this heuristic 

and will be presented next. 

 

5.6. Evolutionary Algorithm Approach for Sampling 

 

The Evolutionary Algorithm approach chosen is aimed at solving the following problem: how to define a 

sampling policy so that the elements with higher feature values have a better approximation faster. In order 

to solve this problem, it is necessary to deal with two conflicting goals: identifying new potentially highly 

connected vertices and sampling the vertices that are already known to be well connected to quickly 

approximate their feature values. In an Evolutionary Algorithm method there are basically three main 

operations [96], combination (or crossover), mutation, and selection. However, for sampling, there are no 

suitable combination methods, because there is no meaning on a general combination of the information of 

two vertices. In place of the combination that is supposed to preserve the information of important vertices, 

a local mutation was defined. The overall algorithm is represented in the block diagram in Figure 5-12. The 

main blocks will be explained in separate below. 
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Figure 5-12 - Block diagram of EA-based sampling policy 
 

The genotype of each individual is the name of an input vertex that is going to be the initial point for 

sampling. Because it is assumed that there is no knowledge about the goal of the feature values, the fitness 

function is not related to these values. The fitness is related to the sampling policy, trying to foster the 

exploration of unknown vertices to improve the overall chances of having obtained the complete traversal 

of all paths. In numeric terms, the fitness value for individual i, f(i) is defined as 

 

 ( )
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f i

n v i
= , (5.7) 

 
where n(j) is the number of times the vertex j was sampled, and v(i) is the vertex represented by the 

individual i. 

 

5.6.1. Local mutation 

 

The goal of the local mutation is to exploit the areas that are known to have high feature values, in order to 

obtain a better approximation of the feature values. This process uses the observed fact that there usually is 

a positive correlation between the degrees in the different partitions in some datasets, thus it is possible to 

predict high feature values through all the partitions by just observing the feature values of the vertices that 
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are connected in the initial partitions. For example, in a journal paper dataset, when trying to identify the 

most important authors, if it is known that an author is important, there is a high chance that this author’s 

co-authors are important too. 

 

Therefore, the proposed algorithm for the local mutation does obtain neighboring vertices by exploiting the 

positively correlated relations. The pseudo-code for the algorithm can be seen in Table 5-4. The output of 

this algorithm, like the output of a common mutation, is a new individual that is inserted in the population. 

The first important step of this process is determining which elements should be mutated locally. This is 

simply solved by using a roulette wheel to select based on their feature values, i.e., the higher the feature 

value is, the more likely the vertex is to be selected for local mutation. Besides this step, there are two 

important parameters to be set. 

 

The first one is the locality definition, defining which walk semantics should be used to obtain the 

positively correlated neighbor. For example, in the earthquake dataset the most natural neighbor to a 

position is the geographical neighbor defined by the property “closeBy.” However, when defining a 

neighbor of a paper author, it is defined as a sequence of a property (“wrote”), a vertex type (“Publication”) 

and then another property (“writtenBy”). 

Table 5-4 – Pseudo-code for Local Mutation 

function mutate_local(from_element) 
1. distance_left = d 
2. loop 

a. Calculate all possible neighbors in the subgraph counting the number 
of instances of the walk to the neighbor 

b. Choose a neighbor randomly 
c. if the distance to the neighbor (dist) is less than the distance 

left 
 i. distance_left = distance_left – dist 
 ii. Move to neighbor 
d. else, get out of the loop 

3. return the current element 

 

The second parameter is the maximum distance that this neighbor can be located to still be defined as 

“local.” This is also highly dependent on the application. For an earthquake dataset, maybe more than two 

transitions through the “closeBy” property may lead you to a very distant position (more than 10o from the 

initial position). At the same time, for authors, the co-author of a co-author of a co-author may still have 
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some meaning, because it usually means the analysis is still in the same field, and probably in the same 

research group. Moreover, sometimes it may be interesting to weight the connection based on the inverse 

structural feature, e.g., when identifying important authors, the co-authors that published many papers with 

this author may sometimes be considered “closer” to the author. For the examples chosen, this assumption 

was always considered, and the distance was the inverse of the structural feature value for the connection 

between the two elements: 
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where d(i,j) is the distance between vertices i and j. flocal(i,j) is the feature following the path defined as 

local for the algorithm. In other words, the neighborhood can be seen as the process of weighted graph 

collapsing defined in Definition 9, Chapter 2, where the weights are the inverse of the feature value. 

Finding vertices that are within a distance d from a vertex v is equivalent to a weighted walk in this 

weighted collapsed graph such that the total weight of the walk is less than d. 

 

5.6.2. Global mutation 

 

The global mutation process has the objective of weighting towards exploration of unknown elements. It is 

simply implemented by randomly selecting a vertex from the database and adding it to the population.  

 

5.6.3. Selection 

 

After this new modified population was added to the old population, a selection process has to take place to 

define which individuals represent the vertices that should be sampled. This selection is based on the fitness 

function discussed above, using the roulette wheel approach for selecting the final population, thus having 

the probability of preserving some highly sampled vertices at the same time focusing on sampling unknown 

regions. 
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Next section presents some experimental results of the proposed method, in comparison to the naïve 

sampling presented above.  

 

5.7. Sample Experimental Results 

 

Before presenting the experimental results, a method for rating the performance has to be proposed.  

 

5.7.1. Error functions 

 

Error determination is vital to any experimental results, because they offer quantitative information of the 

amount of improvement that the method offers. However because of the lack of research on the 

approximation of structural features of databases, no standard error functions were ever developed. There 

are three possible types of error functions that can be of interest: absolute feature value magnitude error, 

global ranking error, and top ranking error. 

 

5.7.1.1. Absolute feature value magnitude error. This error measure is based on the expected feature 

value and the approximated feature value. It can be defined as the squared error 
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where N is the number of elements to which the feature is calculated (for example, if a feature is calculated 

for all possible pairs of input and output vertices, then N is the product of the number of input and output 

vertices);  is the actual feature value for the element (or element group) i; and ( )f i ( )f̂ i  is the 

approximated value of the feature. 
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It is the most natural error measures defined, but suffers from very important drawbacks. First, it is a global 

error measure, thus it penalizes the error in approximating features values that are too low to even be of 

interest. Secondly, it does assume that the feature value itself is of importance. However, due to the highly 

skewed degree distributions observed in the databases, as discussed in Section 5.5, the amplitude of the 

feature value is usually not as important as the actual rank that this feature receives compared to the same 

feature in other vertices. Having this interest in ranks in mind, the next two error measure types were 

proposed. 

 

5.7.1.2. Global ranking error. The global ranking error comes from comparing the ranking values of the 

approximated features compared to the expected feature ranks. Inspired by nonparametric distance 

measures [97], the following error measure is proposed. 
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where RT is the mid-ranking value following the actual feature values, while RS is the ranking of the 

approximated feature values. 

 

This method does take into consideration that usually it is interesting to use the ranking as the actual feature 

than the numeric feature observed. However, the problem with using ranking for highly skewed 

distributions is that there are a very large number of ties, sometimes close to 50% of the values are tied. 

The mid-ranks procedure prescribes the use of the average value of the ranks that would be assigned to the 

tied values if they were not tied [95]. For example, when ranking three elements, the two lowest valued 

ones are tied, both receive a rank value of 2.5 (the average between 2 and 3). Therefore, if there are, for 

example 2,000 elements with the same feature value, but one is incorrect, this makes the ranking value of 

all of them to be incorrect and off by 0.5. Thus, very small errors caused by sampling, especially on the 

elements with very low ranking, can generate large ranking errors. 
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However, it can be argued that these elements with very low feature values are not of interest in any 

processing, so their error should not be considered. With this in mind, a third error measure was defined, 

the top ranking error. 

 

5.7.1.3. Top ranking error. If the interest in the analysis is only to identify the top ranked elements for 

the given feature when calculating the approximation error, it is not reasonable to consider the ranking of 

all the elements. Therefore, one new error measures were proposed where only the ranking of the first L 

elements is considered. 
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where ( )i

SX  is the ith
  ranked element according to the approximated feature values. 

 

This error measure does not present the problems indicated above for the other global error measures. 

However, it is important to note that for some applications, not only the L highest valued features are 

important; therefore, all three proposed error measures are used to rate the sampling algorithms in the 

application examples presented next. 

 

5.7.2. Sampling collections of journal papers 

 

As identified before in Table 5-3, the collection of journal papers in anthrax research contains moderate 

positive correlation between the author and the number of times cited. Therefore it is safe to expect that the 

proposed EA-S algorithm is able to efficiently identify the most important authors by analyzing the author 

bibliographic coupling and using co-authorship as the neighborhood (see Section 7.1 for a description of 

each of these walk semantics). In order to obtain statistically significant results, each of the sampling 

methods were applied 20 times and the average result and the standard deviation are presented below. 
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For both methods, 107 samples were taken. In the N-S approach, 105 choices were made and in which 

choice, the chosen element was sampled 100 times. While in the EA-S approach, 1,000 generation were 

simulated, with population size of 100 individuals per generation and 100 samples for each individual in 

each generation. 10 new individuals are chosen based on the local mutation, and 10 individuals are chosen 

using the global mutation. Table 5-5 shows the average error measures and standard deviation for this 

experiment. The distance used was chosen empirically to be d = 1, because it provided the best results. 

 

Table 5-5 - Comparison of the N-S and EA-S for the anthrax database 
Algorithm 

aE  aσ  
KGE  KGσ  20

TE  20
Tσ  

N-S 1.812×108 2.170×107 6.110×109 7.063×108 8.433×104 6.041×103

EA-S 1.884×108 2.062×107 9.619×109 6.331×108 5.948×104 1.957×103

 

 

As expected, the EA-S method does obtain a lower error in the top-20 rank error, but does offer a higher 

error for the errors based on all the features.  

 

5.7.3. Sampling earthquake event databases 

 

As seen in Table 5-3, the earthquake dataset offers a much lower correlation between partitions. In this 

case, one of the assumptions made in the EA-S approach is not kept. However, it was decided to use the 

proposed algorithm in this application in order to understand the effect of the violation of this assumption. 

The feature used was the same as the previous chapter, of identification of important earthquake regions. 

Again in this case the algorithms ran for 20 times in order to obtain statistically-sound results.  

 

Because the branching factor of the elements in this dataset for the given walk semantics is lower than the 

one in the previous example, only 5×105 samples were used. In the N-S algorithm, 50,000 choices were 

made and each chosen element was sampled 10 times. While in the EA-S approach, 500 generations were 

used, with population size of 100 individuals and 10 samples for each individual per generation. 10 new 

individuals are chosen based on the local mutation, and 10 individuals are chosen using the global 

mutation. The results are shown in Table 5-6. The distance used was d = 1, also chosen empirically. 
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Table 5-6 - Comparison of the N-S and EA-S for the anthrax database 
Algorithm 

aE  aσ  
KGE  KGσ  20

TE  20
Tσ  

N-S 8.368×107 2.112×106 8.244×1013 4.153×1012 1,434.5 94.5 

EA-S 1.902×108 9.873×106 9.955×1013 6.133×1012 6,443.2 247.1 
 

As it can be seen, the EA-S algorithm did not perform very well when one of its assumptions is not met. 

When analyzing the behavior of the sampling to understand the reason for this difference, it was observed 

that the EA-S ends up having the tendency to over-sample some elements with very low branching factor 

but are neighbors from elements with high feature values. Because of the neighborhood being so sparse in 

this dataset, comparing to the previous dataset, and the number of global mutated individuals being low, 

there are a large number of high branching elements that never get to be sampled enough, causing this large 

error. 

 

5.8. Summary 

 

This chapter presents two algorithms for performing approximate feature extraction based on sampling. 

This process is vital when dealing with large databases and when there are not enough resources to store 

the whole database in memory for feature extraction. 

 

The first algorithm, the naïve sampling algorithm, is asymptotically optimal when trying to obtain the 

feature values for all the elements throughout the database. It is very simple to implement, but requires a 

large number of samples to obtain good approximations of the feature values. The second algorithm, the 

evolutionary algorithm-based sampling is efficient in obtaining faster approximations to the feature values 

of the elements with the highest feature values as long as there is a way to define a neighborhood in which 

elements with high feature values are neighbors. This is the case when analyzing important authors in a 

collection of journal papers, by using author bibliographic coupling as the feature of interest and co-

authorship as the neighborhood. However, when trying to employ the same algorithm to the earthquake 

dataset for determining active earthquake areas and using geographic proximity as the neighborhood, this 
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correlation is not high enough. Therefore, the EA-S method tends not to give results that are as good as the 

N-S.  

 

The following chapter discusses implementation of the graph-structured database and the algorithms used, 

as well as some methods that can be used to increase efficiency of the algorithm without using 

approximations or requiring user intervention.  
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CHAPTER 6 

Implementation Considerations 

 

6.1. Introduction 

 

When implementing graph-structured databases, the first challenge comes from the lack of off-the-shelf 

solutions for these kinds of databases. There exists a lack of implementations of efficient algorithms and 

data storage methods for tackling problems that require the use of these kinds of databases despite the 

reasonable amount of research that exist in this field [16]. Not only there is no available implementation as 

there is very little discussion in the scientific literature on what operations these databases should 

implement to be usable to the community, or API (Application Program Interface). An interesting 

exception is the creation of the RDF API by researchers at Stanford, later revised into Jena, a Java API for 

RDF, developed by Brian McBride at HP Labs [98]. However, the scope of this implementation is the 

representation of the RDF structure and not the efficient use for processing. 

 

This short chapter contains information about the implementation of the underlying graph-structured 

database, as well as choices about importing and exporting elements from an ontology. The objective of 

this chapter is to fill a gap in the literature about graph-structured databases by proposing an API for 

dealing these kinds of databases for enabling feature extraction and pattern recognition. This proposed API, 

named GSDB-API, contains the basic functions that have to be implemented according to the operations 

presented in this report. This chapter also presents an analysis of the efficiency of implementing this API 

employing a relational database as the method for increasing search efficiency, enabling persistence and 

alleviating memory requirements. Finally, it discusses some simple implementation choices to improve the 

efficiency of the overall algorithm by observing sub-walk-semantics within the walk semantics of interest. 
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Like the discussion in Chapter 2, the methods proposed here do not intend to cover all possible operations 

on graph-structured databases and ontologies. Their scope is on the implementation of the algorithms 

analyzed in this research. Further work would be necessary to implement graph searching capabilities and 

more specific ontology information to the database, such as cardinality restrictions. Consistency check on 

the database was not implemented either, because it is assumed that this will be done in a higher level when 

building the database (the consistency restrictions on the relational database do not offer much help for 

coding the restrictions on the graph-structured database). 

 

6.2. Graph-Structured Database API Definition 

 

Prior to presenting the API, it is important to list the assumptions made when developing it. However, in 

order to understand the assumptions, it is important to note that in this chapter the word “ontology” 

represents the structure of the graph-structured database, with the vertex and edge types and their relations 

(for this implementation, only three relations were considered of interest: vertex and edge type inheritance, 

edge domain and range restrictions, and semantic inverse-of relation). While the word “database” 

represents vertices and edges that are instances of one or more of these types. The word “database 

collection” is the group of all databases and ontologies that are stored. 

 

• The database collection can store more than one database and more than one ontology. These 

databases and ontologies have to be represented by a unique name. 

• Each database has to reference to at least one ontology in which the element types are defined. 

• In order to enable the use of more than one ontology for each database, each element contains a 

prefix that define the namespace in which the element type is defined. This follows the same 

concept of the XML namespace definition. 

• An ontology may also use elements from another ontology, especially when defining domains and 

ranges for edge types. 

• A database can import data from another database and the system should not replicate the data in 

both databases when this happens to facilitate the support for changes in the database. 
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• Vertices and edges can have multiple inheritances. 

• In the database level there is no need to check for consistency of the ontology restrictions. 

However, it assumes that it is kept throughout the database.  

 

With these assumptions, seven main elements were identified: a general database engine (OntologyEngine), 

an encapsulator for each ontology (Ontology), an encapsulator for each database (GraphData) a vertex and 

edge type elements (VertexType and EdgeType, respectively), and a vertex and edge elements (Vertex and 

Edge, respectively). A simplified UML (Unified Modeling Language) [99] diagram of these elements and 

their composition relations can be seen in Figure 6-1. 

 

 

Figure 6-1 - Simplified UML view of the main elements of the GSDB-API 
 

Below each element will be discussed in more details separately. The API specification with all the 

functions that enable this API for the feature extraction is included in the Appendix II. 

 

• OntologyEngine: This element serves to control all the ontologies and databases registered. It can 

parse external ontology files into new ontologies and databases. In the current implementation, 

only OWL format is supported, but the API does not give any specific constraint to which format 

is loaded, as long as it is contained in a file. 

• Ontology: This element encapsulates an ontology providing access, creation and query of vertex 

and edge types, as well as imported ontologies. 
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• GraphData: This element encapsulates a database offering access, creation and query to the 

vertices and edges, queries on elements of given type, and importing ontologies and other 

databases. It also provides methods for performing the projection operation given a walk 

semantics, and the calculation of a feature matrix given the walk semantics. 

• VertexType: Provides the information about a vertex type, such as its parents and children, as 

well as ability to modify this information.  

• EdgeType: With this element it is possible to define and modify an edge type, its parents and 

children, inverse functional edge, ranges and domains. 

• Vertex: This element is the most basic component of a database, representing an object. It enables 

setting the vertex types. It also provides methods for obtaining all the outgoing or incoming edges 

of a specific type. 

• Edge: Finally this element deals with abstracting the edge element, providing functions to set 

source and target vertices, as well as types. 

 

As mentioned above, one of the functions that is implemented in a GraphData is of projection. The 

projection generates another GraphData that contains only the elements in walks that agree with the given 

walk semantics. Optimally this projection GraphData is made in such a way that obtaining the feature 

values (the ultimate goal for performing the projection) is efficient. If the resulting projected database is 

small enough, it would be even interesting to keep it in the memory for very quick processing. 

 

Another important element is the result of the calculation of the features. It is stored in a container 

EWTable that efficiently saves and load the element groups. It can also quickly provide a part of the 

database based on the ranks for quick visualization of the results. In order to enable its use for the selection 

procedures in the EA-based algorithm explained in Chapter 5, it also needs to obtain random element 

groups based on the feature values (roulette wheel selection). 
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With this simple API it is possible to perform all the processing proposed above. In order to store the 

information collected above, as there is no off-the-shelf graph-structured database engine, a relational 

database was chosen. In the next section details about the tables used in this database will be provided. 

 

6.3. Implementation Employing Relational Database Infrastructure 

 

Relational databases have been used in real-world large-scale applications for many years. Therefore, the 

technology behind these databases is fairly mature, providing very efficient storage and quick retrieval of 

elements. The proposed system makes use of this maturity and, thus, the implementation of the graph-

structured database is done using relational databases. This is done by defining a series of tables for each 

ontology and database in order to store all the values effectively. These tables will be briefly shown below 

in Figures 6-2 to 6-4 organized based on the basic elements presented in the previous section. 

 

The database structure presented in this section is self-explanatory. It is interesting to note that there is a 

different set of tables for each database and ontology in order to support a number of independent datasets. 

The names of the tables contain the ID of the ontology or database defined by the OntologyEngine.  

 

When using this structure, one major deficiency was observed, the need to always perform multiple 

selection operations to obtain the type of elements. As it is assumed that vertices and edges may present 

multiple inheritances, it is necessary to separate the definition of these elements and the definition of their 

types to minimize redundancy and database space use. For example, in order to obtain all out-edges of type 

“t” of a vertex “a” from database “1,” it is necessary to perform the following selection operation in the 

database: 

 

SELECT ToVertex FROM edges_1 INNER JOIN edge_type_table_1  

ON edges_1.name = edge_type_table_1.name  

WHERE edges_1.FromVertex = ‘a’ AND  

edge_type_table_1.EdgeTypeName = ‘t’; (6.1) 
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Join operations are usually very expensive to realize in databases and should be avoided if possible. 

However, there is no known way to avoid it in this case. The only method that can be used to mitigate this 

efficiency problem is not to use a relational database. However, as mentioned before, this is not feasible 

with the current level of implementation of graph-structured databases. 

 

 

Figure 6-2 - Database tables for the ontology engine 
 

 

Figure 6-3 - Definition of tables for storing the ontology. The <ID> is the ontology ID from the Ontologies table 
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Figure 6-4 - Database tables for storing graph-structured databases. The <ID> is the database ID from the 
Databases table 

 

6.4. Increasing Efficiency by Identification of Sub-Walk-Semantics 

 

In the construction of the table of features, the software requires to obtain all the possible equisemantic 

walks between a certain set of elements. It has been discussed before that this process is highly memory 

and time-intensive, even when using the sampling method discussed in Chapter 5. When implementing the 

method a very simple heuristic was observed that assisted in decreasing, sometimes greatly, the amount of 

resources necessary for obtaining the feature values. Given the abstract projection given in Figure 6-5, it is 

easy to see that the features between two vertices vAi and vDj, fAD(i,j) can be defined as: 

 

( ) ( ) ( ) ( )
,

, , , ,AD AB BC CD
m i n j

f i j f m p f p q f q n
= =

= ⋅ ⋅∑ , (6.2) 

 

where fAB(m,n) is the feature value between the vertices of type A and B (subprojection 1), and the same is 

valid for the other subprojections. 
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Figure 6-5 - Abstract representation of a projection divided into three subprojections 
 

This result apparently does not assist in decreasing the processing expense for the algorithm. However, 

given the real-world example of a walk semantics of interest in Figure 6-6, and its subprojection 

representation, it is interesting to observe that subprojections 1 and 2 are the same. In this case, calculating 

the features of only one of them is sufficient for later determining what the feature of the whole projection 

is. Applications for this walk semantics will be presented in Section 7.2. 

 

In order to implement this simplification, an important process is required: the identification of optimal sets 

of subprojections. It is important to note that the calculations presented in Equation (6.2) do require extra 

computation, but it is usually lighter than the computation required if there is a need of obtaining the whole 

projection. There are many algorithms in the literature for efficiently obtaining frequent subsequences 

[100], however, this algorithms are fine-tuned to deal with very large data strings. It is a safe assumption 

that all walk semantics of interest are reasonably short, thus enabling the use of simple brute-force-type 

algorithm. The shortest sub-walk has the length of 2, because a sub-walk of length 1 is a single edge and 

does not require any additional calculation. The pseudo-code for the algorithm used is given in Table 6-1. 

 

After the largest recurrent sub-walks are isolated, the system calculates the features for each of these sub-

walks and then composes the results. This is all done transparently for the user. Processing time and 

memory use improvements of 10-40% were observed in databases in which there are walk semantics of 

interest that can be decomposed. 
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Figure 6-6 - Walk semantics and projection for identifying earthquake "hot spots" 
 

Table 6-1 - Pseudo-code for identification of sub-walks within a walk semantics 
Max_length = length(walk_semantics)/2 
Ter s = 
For each of the Terms 

m Find all elements that appear at least twice in the walk semantics 

 Search forward for same terms in at least two of the occurrences 
 If there are same terms for at least 2 occurrences with length at least 2 
  If these sequences do not overlap 
   Save sequences in Candidates 
  End if 
 End if 
Next 
If some candidates overlap 

Choose the largest candidate, or randomly select one of them and delete the other 
candidates 

End if 
Sub-walks = candidates 
Augments sub-walks by the elements that are missing to complete the walk semantics 
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CHAPTER 7 

Application Examples 

7.1. Introduction 

 

This chapter will present examples of larger-scale applications of the algorithms proposed in this document. 

These examples have the goal of providing further support that structural features are useful for the 

identification of patterns in graph-structured databases. 

 

Two examples will be shown in two different databases. The first example is on applying structural feature 

extraction to dealing with the problem of author name disambiguation in collections of journal papers. The 

second example is on identifying hot spots for earthquakes in an earthquake database. While the first 

example is more challenging in understanding the features involved and finding the patterns, the second 

example uses a much larger database and will make use of the sampling algorithms proposed in Chapter 5 

to provide the scalability necessary for solving this problem. 

 

7.2. Author Disambiguation in Collections of Journal Papers 

 

Name disambiguation has been one of the grand challenges in bibliometric research [101-103]. Its 

applicability extends beyond just journal papers. Some examples of other applications of name 

disambiguation are geographical and historical analysis [104], text mining [105], criminal analysis, and 

speech recognition. 

 

In bibliometric research, the main methods for name disambiguation use keyword information to obtain 

information that could suggest that authors are the same. However, in many datasets, some papers do not 

contain keyword information. Other information in publication databases can also be used for author 

disambiguation, such as citation information (authors tend to reference the same papers), co-authorship 
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(authors tend to publish with the same authors) and co-journal (authors tend to publish in the same 

journals). One important observation that has to be made while trying to disambiguate two authors is that if 

there is a paper that both these authors appear co-authoring a paper, it is enough evidence to support that 

these authors are not the same. Finally, name problems with authors in publication databases are usually 

caused by the omission of middle initials, misspelling, and lack of standard when dealing with compound 

family names. 

 

With this information, the pattern recognition based on examples can be applied for disambiguating authors 

using the following algorithm: 

 

1. Examples of the same authors are created artificially; 

2. The distance from each pair of authors to the examples is calculated based on the following walk 

semantics with manually assigned weights (in parenthesis). The explanation of each walk 

semantics is given in Figure 7-1: 

a. Co-authorship (100): two co-authors cannot be the same. 

b. Double co-authorship (1) 

c. Cites (1) 

d. Is cited by (1) 

e. Bibliographic coupling (1) 

f. Co-citation (1) 

g. Co-keyword on title (1) 

h. Co-source (1) 

3. The top 1% are extracted and ranked based on name similarity removing redundant pairs (from 

author A to B and B to A). 

4. The top matches are presented to the user based on word similarity threshold. 

 

Applying this algorithm to the Anthrax dataset using six artificially created examples (authors with high 

number of papers were selected and one paper at random from each had the name of the author modified so 
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that it was considered a different vertex) and adding 2 test datasets created in the same way, the following 

results in Table 7-1 were obtained. The word similarity measure used was the number of matching pairs of 

letters between the names. 

 

 

Figure 7-1 - Definitions of walk semantics used for author disambiguation 
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The Anthrax dataset contains 12,337 publications obtained from the ISI database with 20,701 citations (all 

citations are to the publications in the database – most publications do not contain citation information) in 

the Anthrax research field. The ontology of this database is shown in Appendix I-2. It contains a total of 

33,826 vertices, not counting the numerical vertices (such as year value and journal volume and issue) and 

text vertices (such as author and journal name, keywords and publication title). These are not considered in 

this analysis. Keywords could be interesting, however most publications in the database do not contain this 

information, thus it only increases complexity without a significant increase in the information. 

 

Table 7-1 - Results from author disambiguation 
Rank Authors 
1 Friedlander AM Friedlander A 
2 Farchaus JW Farchaus J 
3 Fellows PF Fellows P  
4 Jackson P  Jackson PJ  
5 Little SF  Little S  
6 Welkos S  Welkos SL  
7 Eitzen E  Eitzen EM  
8 Leppla SH  Leppla S  
9 Gibbs P  Gibbs PH  
10 Hanna PC  Hanna P  
11 Ivins BE  Ivins B  
12 Tosi-Couture E  TosiCouture E  
13 Shlyakhov EN  Shlyakhov EN 2  
14 Brachman PS  Brachman PS 2  
15 Shlyakhov EN 2  Shlyakhov E  
16 DALLDORF FG  DALLDORF FE  
17 Baillie L  Baillie LWJ  
18 HUGHJONES M  Hugh-Jones ME  
19 Singh S  Singh Y  
20 Woude GFV  Vande Woude GF  
21 Hanna PC  Khanna H  
22 BRACHAM PS  BRACHMAN PS  
23 Pitt L  Pitt MLM  
24 WEBER M  Weber-Levy M  
25 Perkins B  Ivins BE  

 

 

On ranks 13, 14 and 15 the test values were identified. It is interesting to note that this algorithm was able 

to find matches on all three common mistakes. The most common mistake is of absence of middle initial. 

But changes in spelling standard were also detected, such as in 18, 20 and 22. However, when the 

restrictions in word matching start to become looser, some matching errors start to appear, such as in ranks 
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19, 21 and 25. These errors can be easily observed by quick visual inspection of the results. They could 

have been avoided by a stricter definition of the word matching criteria, but this would lead to longer 

processing time, and possible loss of some of the mistake types. 

 

7.3. Identification of Earthquake Hot Spots 

 

Performing a similar analysis to the one made in Chapter 5, it is possible to obtain earthquake “hot spots” 

by analyzing the walk semantics given in Figure 7-2. As it is natural to assume that the result of this 

algorithm should provide a single location, only the cases in which the initial and final positions are the 

same are considered. 

 

 

Figure 7-2  - Walk semantics for identification of earthquake "hot spots" 
 

Two possible results can be taken from this analysis. The first one is a tabular result that presents all the 

ranked earthquake locations. Although this method is very precise, it does not offer a natural visualization 

for non-experts in earthquake analysis. The tabular result was presented in Table 7-2, where the top 10 

earthquake positions are shown. However, when plotting the positions on top of a world map, it becomes 

easier to see and interpret the results. Figure 7-3 shows an example of this map in which all top 1,000 

earthquake events are marked with red dots. Figure 7-4 shows the same type of analysis but focusing on the 

West Pacific islands. With this increase in magnification it is possible to plot the circles to define the 

regions proportional to the feature values obtained. This helps to identify possible patterns within the top 

1,000 earthquakes. For example, it is possible to see that, large earthquakes (the red large circles) appear 

spread around the areas of high earthquake incidence, not only centered in a single spot. 
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Table 7-2 - Top 10 tabular result for earthquake "hot spots" 
Rank Latitude Longitude Place Feature value 
1 -5 153 Papua New Guinea 806,796 
2 -5 152 Papua New Guinea 572,155 
3 -18 -179 Fiji 510,072 
4 -15 167 Vanuatu 509,418 
5 -18 -178 Fiji 507,872 
6 -21 -179 Fiji 481,614 
7 1 126 Indonesia 467,544 
8 44 149 Japan 406,617 
9 -21 -174 Fiji 371,656 
10 -6 155 Papua New Guinea 367,086 

 

 

Figure 7-3 - Map of all top 1000 earthquake locations in the world 
 

 
Figure 7-4 - Map of top earthquake locations in the West Pacific highlighting most active regions within the 

region 
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CHAPTER 8 

Conclusions 

This document presents novel methods for analyzing graph-structured databases by defining features based 

on the structure of the graph, rather than by the conditional existence of certain connections as previous 

studies have presented. The algorithm is centered on the concept that information in a database is directly 

related to a certain semantic walk in the data structure of this database. By defining the feature of interest 

using a semantic walk, it is possible to calculate the feature values for each group of vertices in the 

database. After calculating the feature values, it was shown that pattern recognition methods can be 

employed to identify patterns in the database, either defined as explicit set of walk semantics, by presenting 

examples of interest, or by a combination of both. 

 

Following the same framework of information related to a semantic walk, this report presented a method 

for performing transformation of the structure of a database. This transformation is essential when 

employing third-party or legacy databases in which structures were defined aiming other specific 

applications or ease of storage and retrieval in relational databases. Having a database structure that relates 

more to the application is essential for the generation of meaningful walk semantics that, in turn, provide 

more powerful features for pattern recognition. Another interesting result presented from the 

implementation of the transformation framework is the ability to improve the efficiency of the feature 

extraction algorithm by applying transformations that decrease the length of the walk semantics without 

significant information loss. 

 

Scalability is an important issue on graph-structured databases. This document presents two methods for 

performing scalable feature extraction by using feature approximation by sampling. This is a novel way of 

pursuing scalability where in most other applications it was achieved by requiring a large number of 

parallel processing. The methods offered in this document have the benefit of enabling the exchange of 

computer resources for accuracy. If more computer power is available, very precise results can be obtained, 
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while if very quick and rough results are only needed, the algorithm can present still usable findings. By 

employing an evolutionary algorithm approach incorporated with heuristics for efficiently searching, it is 

possible to obtain even better approximations on elements with high feature values, as long as there is a 

method to define positively correlated neighborhood to the elements being sampled. 

 

Another contribution presented in this document is an API for dealing with feature extraction in graph-

structured databases. Although this API is not complete for all possible applications in graph-structured 

databases, it is a very important starting point for the wide-spread uses of graph-structured databases in 

pattern recognition. Implementation also provided a third method for improving the efficiency of the 

feature extraction by observing recurrence of sub-walks in semantic walks. This improvement, like the one 

presented by transformation, can be implemented easily without user intervention, simplifying the 

experience the user has with the system. 

 

Two major application examples were presented in this document to further support the concepts proposed. 

The first one is on author disambiguation, a very important step when dealing with very noisy collections 

of journal papers. Without author disambiguation, some artifacts can be created in the analysis. Simple 

binary value presence analysis, like the ones proposed in the literature, is impossible to obtain good 

features for this task. The use of structural features has improved the quality of these features enough to 

make this task solvable. The second application was on the identification of earthquake “hot spots” or 

locations with high earthquake activity. This analysis cannot be performed easily without taking into 

consideration the structure of the graph-structured database alone. But with a single structural feature, it is 

possible to easily observe with a large number of details in these problematic areas. 

 

A very large number of other applications can be envisioned that would benefit from the extraction of 

structural features. Among them are: 

 

• market basket analysis for extraction of consumption patterns; 

• analysis of networks of movie actors for identification of groups and actor preferences; 
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• terrorist network identification for homeland security; 

• analysis of complex interactions of large molecular databases; 

• authorship identification in text databases; 

• identification of possible interaction between events in newspaper articles; and 

• analysis of the subtle connections between stock market behavior and news stories. 

 

Also a very large number of possible improvements can be made to the proposed algorithm by further study 

of the following aspects not covered in this research: 

 

• Definition of a systematic method for identifying walk semantics of interest – although 

most of the times the walk semantics are easy to identify, it would be interesting to present a 

method for systematically analyzing the requirements and identifying which walk semantics 

may represent better these requirements. 

• Dealing with numeric-element-related features – the current algorithm is tuned to 

categorical elements, thus it is not able to implicitly deal with relations formed from 

numerical connections. For example, one of the most common numerical feature in databases 

is time. The current algorithm can only accept time as another entity, but in some cases it is 

necessary to deal with time as a special entity. For example, when augmenting the analysis of 

important authors to authors with important current publications, it is necessary to add some 

effect from time in the definition of the weights. 

• Analysis of improvement of efficiency by parallelism – the use of parallel algorithms has 

been shown to be very efficient in dealing with graph-structured databases. If the proposed 

algorithm can further improve its scalability by using this feature, it can effectively increase 

the applicability of this algorithm for very large databases. 

• Explicit inclusion and testing of syntactic features – although the addition of syntactic 

features was proposed in this document, no examples were found in which their use is 

applicable. Only after implementation it is possible to understand and possibly engage further 

analysis of defining weight policies. 
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• Analysis of the effects of dimensionality reduction – Like the inclusion of syntactic 

features, only by effectively applying the dimensionality reduction it is possible to understand 

its effects. Because of the correlation between some of the walk semantics used, it is expected 

that it would be possible to perform a very large dimensionality reduction if it would be 

necessary. However, it is possible that some non-linear effects may hinder the applicability of 

the method in some applications. 

• Inclusion of explicit features in performing the pattern recognition – in this document, all 

the features of interest were structural. Sometimes it may be interesting to combine structural 

and explicit features, such as the social contacts of a person and this person’s physical 

characteristics. Mixing features of very different natures can be very challenging for pattern 

recognition, but will ultimately improve its performance greatly. 

• Implementation of the large-scale pattern recognition system – as presented in Section 

1.4, the fundamental goal for this research is to obtain part of the features that would be later 

used in a large-scale pattern recognition system. In order to implement this system, a number 

of other elements have to be realized, such as ontology extraction and user interface. 

 

In summary, the results obtained in the research documented here are an indication that the use of structural 

features is feasible and vital for pattern recognition in graph-structured databases. The preliminary results 

on test datasets have shown that the features are easy to identify, understand and powerful enough to enable 

the recognition of some even complex patterns in these datasets. This study is just a preliminary step 

towards a more general and wide-reaching pattern recognition system. Its successful implementation will 

increase in many ways the applicability of graph-structured databases in the real-world, supporting the 

current trends of employing this structure because of its good representation power and understandability 

properties. 
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Appendix I 
Ontologies Used 
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1. ISI Ontology for Collections of Journal Articles 
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2. Modified Ontology for Collections of Journal Articles 
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3. United States Geological Survey Ontology for 

Earthquake Events 
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4. Modified Ontology for Earthquake Events 
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Appendix II 
API for Graph-Structured Database Analysis 
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OntologyEngine 
 
    /** 
     * Tests if an ontology exists in the database 
     * @param name The name of the ontology to test 
     * @return True if the ontology exists 
     */ 
    public boolean existsOntology(String name); 
     
    /** 
     * Gets the given ontology 
     * @param name The name of the ontology 
     * @return The ontology or null if the ontology does not exist 
     */ 
    public Ontology getOntology(String name); 
     
    /** 
     * Create a new empty ontology 
     * @param name The name of the ontology 
     * @param description The description of the ontology 
     * @return The ontology. It the name already exists it would return 
     * null. 
     */ 
    public Ontology createOntology(String name, String description); 
 
    /** 
     * Checks if a certain database exists in the database 
     * @param name The name of the database that is being sought for 
     * @return True if the database exists. 
     */ 
    public boolean existsDatabase(String name); 
     
    /** 
     * Gets the ID of the database with given name 
     * @param name The name of the database 
     * @return The ID of the database. -1 if the database was not found. 
     */ 
    public int getDatabaseID(String name); 
     
    /** 
     * Gets a database engine for the given database 
     * @param name The name of the database 
     * @return The database engine or null if the database does not exist 
     */ 
    public GraphData getDatabaseEngine(String name); 
     
    /** 
     * Create a new database engine 
     * @param name The name of the database 
     * @param description The description of the database 
     * @return The database engine for this new database, or null if the  
     * database already exists. 
     */ 
    public GraphDate createDatabaseEngine(String name, String description); 
 
 

Ontology 
 
    /** 
     * Get the name of the ontology 
     * @return The name of the ontology 
     */ 
    public String getName(); 
     
    /** 
     * Setter for the name of the ontology 
     * @param newName The new name of the ontology 
     */ 
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    public void setName(String newName); 
     
    /** 
     * Get the description of the ontology 
     * @return The description of the ontology 
     */ 
    public String getDescription(); 
     
    /** 
     * Setter for the description of the ontology 
     * @param newDescription The new description of the ontology 
     */ 
    public void setDescription(String newDescription); 
     
    /** 
     * Create a new vertex type 
     * @param name The name of the type 
     * @param description The description of the type 
     * @return The VertexType interface implementation with the newly created 
     * vertex type 
     */ 
    public VertexType createVertexType(String name, String description); 
     
    /** 
     * Create a new edge type 
     * @param name The name of the type 
     * @param description The description of the type 
     * @return The EdgeType interface implementation with the newly created 
     * edge type 
     */ 
    public EdgeType createEdgeType(String name, String description); 
     
    /** 
     * Remove a vertex type from the database 
     * @param name The vertex type name 
     */ 
    public void deleteVertexType(String name); 
     
    /** 
     * Remove an edge type from the databse 
     * @param name The edge type name 
     */ 
    public void deleteEdgeType(String name); 
     
    /** 
     * Checker for a vertex type 
     * @param name The type being checked 
     * @return True if the type exists in the ontology 
     */ 
    public boolean hasVertexType(String name); 
     
    /** 
     * Checker for the edge type 
     * @param name The type being checked 
     * @return True if the type exists in the ontology 
     */ 
    public boolean hasEdgeType(String name); 
     
    /** 
     * Getter for a vertex type from the ontology 
     * @param name The name of the type 
     * @return The vertex type interface implementation. Null if the type does 
     * not exist. 
     */ 
    public VertexType getVertexType(String name); 
     
    /** 
     * Getter for an edge type from the ontology 
     * @param name The name of the type 
     * @return The edge type interface implementation. Null if the type does 
     * not exist. 
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     */ 
    public EdgeType getEdgeType(String name); 
 
    /** 
     * Get the full name of a vertex type. If the type is of the same  
     * ontology, it just returns the name. If it is from one imported ontology, 
     * it gives the alias and the name. 
     * @param vt The vertex type 
     * @return The name with the alias, when necessary 
     */ 
    public String getFullName(VertexType vt); 
     
    /** 
     * Get the full name of a edge type. If the type is of the same  
     * ontology, it just returns the name. If it is from one imported ontology, 
     * it gives the alias and the name. 
     * @param et The edge type 
     * @return The name with the alias, when necessary 
     */ 
    public String getFullName(EdgeType et); 
 
    /** 
     * Import an ontology, given the database name and its alias 
     * @param name The database name 
     * @param alias The alias given to the database 
     */ 
    public void importOntology(String name, String alias); 
     
    /** 
     * Import a database given the ontology  
     * @param onto 
     * @param alias 
     */ 
    public void importOntology(Ontology onto, String alias); 
     
    /** 
     * Getter for the ontology alias, given an ontology 
     * @param ontologyName The name of the ontology (unique name in the  
     * database) 
     * @return The alias of the ontology in this database 
     */ 
    public String getOntologyAlias(String ontologyName); 
 

GraphData 
 
    /** 
     * Getter for the name of the database 
     * @return The name of the database 
     */ 
    public String getName(); 
     
    /** 
     * Setter for the database name 
     * @param newName The name of the new database (has to be unique) 
     */ 
    public void setName(String newName); 
     
    /** 
     * Getter for the database description 
     * @return The database description 
     */ 
    public String getDescription(); 
     
    /** 
     * Setter for the database description 
     * @param newDescription The new database description 
     */ 
    public void setDescription(String newDescription); 
     
    /** 
     * Method for importing a given ontology 
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     * @param name The name of the ontology to be imported 
     * @param alias The alias to give to this ontology connection 
     */ 
    public void importOntology(String name, String alias); 
     
    /** 
     * Method for importing a given ontology, given the ontology object 
     * @param name The ontology object to be imported 
     * @param alias The alias to give to this ontology connection 
     */ 
    public void importOntology(Ontology onto, String alias); 
     
    /** 
     * Method for importing a database 
     * @param name The database name 
     * @param alias The alias to give to the database 
     */ 
    public void importDatabase(String name, String alias); 
     
    /** 
     * Method for importing a database given the database object 
     * @param name The database object 
     * @param alias The alias to give to the database 
     */ 
    public void importDatabase(GraphData db, String alias); 
     
    /** 
     * Creates a vertex in the ontology 
     * @param name The name of the vertex – has to be an unique identifier  
     * @param type The type of the vertex 
     * @return The newly created vertex 
     */ 
    public Vertex createVertex(String name, VertexType type); 
     
    /** 
     * Creates an edge in the ontology 
     * @param name The name of the edge – has to be an unique identifier  
     * @param type The type of the edge 
     * @return The newly created edge 
     */ 
    public Edge createEdge(String name, EdgeType type); 
     
    /** 
     * Getter for a given vertex 
     * @param The name of the vertex being searched 
     * @return The found vertex. Null if the vertex does not exist 
     */ 
    public Vertex getVertex(String name); 
     
    /** 
     * Getter for a given edge 
     * @param The name of the edge being searched 
     * @return The found edge. Null if the edge does not exist 
     */ 
    public Edge getEdge(String name); 
     
    /** 
     * Delete a given vertex from the database 
     * @param name The name of the vertex to be deleted 
     */ 
    public void deleteVertex(String name); 
     
    /** 
     * Delete a given edge from the database 
     * @param name The name of the edge to be deleted 
     */ 
    public void deleteEdge(String name); 
     
    /** 
     * Creates and gets a projection following the walk semantics 
     * @param walkSemantics The walk semantics of the projection 
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     * @return A GraphData element that represents the projection 
     */ 
    public GraphData getProjection(String [] walkSemantics); 
     
    /** 
     * Calculate the feature given a walk semantics and get the feature table. The  
     * weight policy is, following the API, hard-coded. 
     * @param walkSemantics The walk semantics 
     * @return An instance of the EWTable with the values of the features 
     */ 
    public EWTable getEquisemanticWalkTable(String [] walkSemantics); 
     
    /** 
     * Getter for the ontology alias, given an ontology 
     * @param ontologyName The name of the ontology (unique name in the  
     * database) 
     * @return The alias of the ontology in this database 
     */ 
    public IOntologyEngine getOntology(String alias); 
     
    /** 
     * Getter for an imported database 
     * @param alias The database alias 
     * @return An object encapsulating the desired database, or null if  
     * the database was not found 
     */ 
    public GraphData getDatabase(String alias); 
     
    /** 
     * Getter for the ontology alias, given a database 
     * @param ontologyName The name of the ontology (unique name in the  
     * database) 
     * @return The alias of the ontology in this database 
     */ 
    public String getOntologyAlias(String ontologyName); 
     
    /** 
     * Getter for the database alias, given the database 
     * @param databaseName The name of the database (unique name in the  
     * database) 
     * @return The alias of the ontology in this database 
     */ 
    public String getDatabaseAlias(String databaseName); 
     
    /** 
     * Getter for all edges to a certain vertex 
     * @param vertex The vertex in question 
     * @return A vector with all the edges 
     */ 
    public Vector getEdgesTo(Vertex vertex); 
 
    /** 
     * Getter for all edges to a certain vertex of a given type 
     * @param vertex The vertex in question 
     * @param type The type of the edges being sought for 
     * @return A vector with all the edges of the given type 
     */ 
    public Vector getEdgesTo(Vertex vertex, EdgeType type); 
     
    /** 
     * Getter for all edges from a certain vertex 
     * @param vertex The vertex in question 
     * @return A vector with all the edges 
     */ 
    public Vector getEdgesFrom(Vertex vertex); 
 
    /** 
     * Getter for all edges from a certain vertex of a given type 
     * @param vertex The vertex in question 
     * @param type The type of the edges being sought for 
     * @return A vector with all the edges of the given type 
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     */ 
    public Vector getEdgesFrom(Vertex vertex, EdgeType type); 
     
    /** 
     * Get the full name of a vertex given the current aliases 
     * @param vertex The vertex 
     * @return The full name of the vertex 
     */ 
    public String getFullName(Vertex vertex); 
     
    /** 
     * Get the full name of an edge given the current aliases 
     * @param edge The edge 
     * @return The full name of the edge 
     */ 
    public String getFullName(Edge edge); 
 
    /** 
     * Get the full name of a vertex type given the current aliases 
     * @param vt The vertex type  
     * @return The full name of the vertex type 
     */ 
    public String getFullName(VertexType vt); 
     
    /** 
     * Get the full name of a edge type given the current aliases 
     * @param et The edge type  
     * @return The full name of the edge type 
     */ 
    public String getFullName(EdgeType et); 
     
    /** 
     * Get all the vertices of the given type 
     * @param type The type of the vertices being sought for 
     * @return A vector with all vertices of given type. 
     */ 
    public Vector getVertices(VertexType type); 
     
    /** 
     * Get all the edges of a given type 
     * @param type The type of the edges being sought for 
     * @return A vector with all the edges of the given type 
     */ 
    public Vector getEdges(EdgeType type); 
 

VertexType 
 
    /** 
     * Gets the ontology name 
     * @return The ontology name 
     */ 
    public String getOntologyName(); 
 
    /** 
     * Get all the direct parents of the given vertex type 
     * @return The parents, a vector of VertexTypes. 
     */ 
    public Vector getParents(); 
     
    /** 
     * Get all the direct children of the given vertex type 
     * @return The children, a vector of VertexTypes. 
     */ 
    public Vector getChildren(); 
     
    /** 
     * Add a parent to the current type 
     * @param parent The parent vertex type 
     */ 
    public void addParent(VertexType parent); 
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    /** 
     * Add a child type to the current type 
     * @param child The child vertex 
     */ 
    public void addChild(VertexType child); 
     
    /** 
     * Checks if a given vertex type is a parent of the current vertex type.  
     * This funcion is recursive, so it checks not only the direct parents,  
     * but the parents up to the highest level. 
     * @param parent The parent being tested for 
     * @return True if it is a parent. 
     */ 
    public boolean isParent(VertexType parent); 
     
    /** 
     * Checks if a given vertex type is a child of the current vertex type.  
     * This funcion is recursive, so it checks not only the direct children,  
     * but the children up to the lowest level. 
     * @param child The child being tested for  
     * @return True if it is a child. 
     */ 
    public boolean isChild(VertexType child); 
     
    /** 
     * Gets the name of the vertex type. 
     * @return The name of the vertex type 
     */ 
    public String getName(); 
     
    /** 
     * Gets the description of the vertex type. 
     * @return The description of  the vertex type. 
     */ 
    public String getDescription(); 
     
    /** 
     * Sets the name of the vertex type. Renames it if the name was already  
     * known! However on has to be careful with this operation because it can 
     * make some databases and ontologies inconsistent. 
     * @param newName The new name of the vertex type 
     */ 
    public void setName(String newName); 
     
    /** 
     * Sets the description of the vertex type. It changes the description if a  
     * description already existed. 
     * @param newDescription The new description for the vertex type. 
     */ 
    public void setDescription(String newDescription); 
     
    /** 
     * Gets the ontology of the given type. 
     * @return The ontology interface. 
     */ 
    public Ontology getOntology(); 
 
    /** 
     * Compares two vertex types to see if they are the same. Compare name and 
     * ontology name. 
     * @param vertexType The vertex type to compare 
     * @return True if they are the same 
     */ 
    public boolean equals(VertexType vertexType); 
 

EdgeType 
 
    /** 
     * Get the name of the edge 
     * @return The name of the edge type 
     */ 
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    public String getName(); 
     
    /** 
     * Get the decription of the edge type 
     * @return The description of the edge type 
     */ 
    public String getDescription(); 
     
    /** 
     * Gets the ontology name 
     * @return The ontology name 
     */ 
    public String getOntologyName(); 
     
    /** 
     * Set the name of the edge type. One should be careful about this function 
     * because it can make the database inconsistent. 
     * @param newName The new name of the edge type. 
     */ 
    public void setName(String newName); 
     
    /** 
     * Sets the description of the edge type 
     * @param newDescription The new description of the edge type 
     */ 
    public void setDescription(String newDescription); 
     
    /** 
     * Get the parent types of the edge type 
     * @return A vector of edge types with the direct parents of the edge 
     */ 
    public Vector getParents(); 
     
    /** 
     * Get the children of the edge type 
     * @return A vector of edge types with the direct children of the edge 
     */ 
    public Vector getChildren(); 
     
    /** 
     * Add a new parent type to the edge type 
     * @param newParent The new parent 
     */ 
    public void addParent(EdgeType newParent); 
     
    /** 
     * Add a new child type to the edge type 
     * @param newChild The new child type 
     */ 
    public void addChild(EdgeType newChild); 
     
    /** 
     * Checks if a given type is parent of this edge type. This function is  
     * recursive, so it checks not only the direct parents, but all the way 
     * to the highest parent. 
     * @param type The type of edge being tested 
     * @return True if it is a parent 
     */ 
    public boolean isParent(EdgeType type); 
 
    /** 
     * Checks if a given type is parent of this edge type. This funcion is 
     * recursive, so it checks not only the direct children. 
     * @param type The type of edge being tested 
     * @return True if it is a child 
     */ 
    public boolean isChild(EdgeType type); 
     
    /** 
     * Getter for all the VertexTypes that can be in the domain of the 
     * given edge 

 136



     * @return A vector of Vertex types that are the domain of the edge type 
     */ 
    public Vector getDomain(); 
     
    /** 
     * Getter for all the VertexTypes that can be in the range of the given  
     * edge type 
     * @return A vector of vertex types that are the range of this edge type 
     */ 
    public Vector getRange(); 
     
    /** 
     * Adds a domain to the edge. 
     * @param newDomain The new domain 
     */ 
    public void addDomain(VertexType newDomain); 
     
    /** 
     * Adds a range to the edge type 
     * @param newRange The new range 
     */ 
    public void addRange(VertexType newRange); 
     
    /** 
     * Checks if a certain vertex type is in the domain of the edge type 
     * @param type The vertex type being tested for 
     * @return True if it is in the domain 
     */ 
    public boolean inDomain(VertexType type); 
     
    /** 
     * Checks if a certain vertex type is in the range of the edge type 
     * @param type The vertex type being tested for 
     * @return True if it is in the range 
     */ 
    public boolean inRange(VertexType type); 
     
    /** 
     * Delete a certain vertex type from the domain of the edge type 
     * @param type The vertex type to be removed 
     */ 
    public void deleteDomain(VertexType type); 
     
    /** 
     * Delete a certain vertex type from the range of the edge type 
     * @param type The vertex type to be removed 
     */ 
    public void deleteRange(VertexType type); 
     
    /** 
     * Gets the ontology of the given type. 
     * @return The ontology interface. 
     */ 
    public Ontology getOntology (); 
     
    /** 
     * Compares two edge types to see if they are the same. Compare name and 
     * ontology name. 
     * @param edgeType The edge type to compare 
     * @return True if they are the same 
     */ 
    public boolean equals(EdgeType edgeType); 
 

Vertex 
 
    /** 
     * Getter for the name of the vertex 
     * @return The name of the vertex 
     */ 
    public String getName(); 
     

 137



    /** 
     * Setter for the name of the vertex. This setter has to be used with care 
     * because it can make the database inconsistent. 
     * @param newName The new name for the vertex 
     */ 
    public void setName(String newName); 
     
    /** 
     * Gets the database name 
     * @return The database name 
     */ 
    public String getDatabaseName(); 
     
    /** 
     * Gets the types of the vertex 
     * @return A vector of VertexTypes with the types this vertex is registered 
     */ 
    public Vector getTypes(); 
     
    /** 
     * Add a new type to the vertex 
     * @param newType The new type of vertex 
     */ 
    public void addType(VertexType newType); 
     
    /** 
     * Deletes a type from the vertex 
     * @param type The type to be deleted 
     */ 
    public void deleteType(VertexType type); 
     
    /** 
     * Get all the edges that are outgoing from this vertex 
     * @return A vector with all the edges that have this vertex as the source 
     */ 
    public Vector getOutEdges(); 
     
    /** 
     * Typed getter for the outgoing edges of the vertex. Returns all edges  
     * of the given type. 
     * @param ofType The type of edge 
     * @return A vector of Edge elements that are the edges of the given type 
     */ 
    public Vector getOutEdges(EdgeType ofType); 
     
    /** 
     * A general getter for all incoming edges of this vertex 
     * @return A vector of Edge elements that contains all edges that have this 
     * vertex as range 
     */ 
    public Vector getInEdges(); 
     
    /** 
     * A typed getter for all incoming edges of this verted of the given type 
     * @param ofType The type of edge 
     * @return A vector of Edge elements that contains all edges that have 
     * this vertex as range and the given type. 
     */ 
    public Vector getInEdges(EdgeType ofType); 
     
    /** 
     * Remove an edge from the list of incoming or outgoing edges. Note that  
     * the edge is not disconnected from the other end. 
     * @param edge The edge to remove 
     */ 
    public void removeEdge(Edge edge); 
     
    /** 
     * Adds an input edge. Automatically sets the target of the edge to be this 
     * vertex 
     * @param edge The edge to connect. 
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     */ 
    public void addInEdge(Edge edge); 
     
    /** 
     * Adds an output edge. Automatically sets the source of the edge to be  
     * this vertex. 
     * @param edge The edge to connect. 
     */ 
    public void addOutEdge(Edge edge); 
 
    /** 
     * Getter for the database 
     * @return The database that this element belongs to 
     */ 
    public GraphData getDatabase(); 
     
    /** 
     * Checks the type of the vertex - does the type test recursively. 
     * @param type The type being asked 
     * @return True if it is of the given type 
     */ 
    public boolean isOfType(VertexType type); 
 
    /** 
     * Checks if it is the same vertex. Compare the name and the database. 
     * @param vertex The vertex being checked 
     * @return True if they are the same  
     */ 
    public boolean equals(Vertex vertex); 
 

Edge 
 
     * Getter for the name of the edge 
     * @return 
     */ 
    public String getName(); 
     
    /** 
     * Setter for the name of the edge. It is important to note that this  
     * function does not maintain the consistency of the database, so it has to 
     * be used with care. 
     * @param newName The new name of the edge. 
     */ 
    public void setName(String newName); 
     
    /** 
     * Gets the database name 
     * @return The database name  
     */ 
    public String getDatabaseName(); 
     
    /** 
     * Getter for the types registered to the edge. 
     * @return A vector of EdgeTypes containing all types directly registered  
     * to this edge 
     */ 
    public Vector getTypes(); 
     
    /** 
     * Register a type to the edge 
     * @param type The type to add to the edge 
     */ 
    public void addType(EdgeType type); 
     
    /** 
     * Delete a type from the edge 
     * @param type The type to delete 
     */ 
    public void deleteType(EdgeType type); 
     
    /** 
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     * Getter for the vertex in the source of the edge 
     * @return The source vertex 
     */ 
    public Vertex getSourceVertex(); 
     
    /** 
     * Getter for the vertex in the target of the edge 
     * @return The target vertex 
     */ 
    public Vertex getTargetVertex(); 
     
    /** 
     * Sets the source vertex of this edge 
     * @param sourceVertex The source vertex 
     */ 
    public void setSourceVertex(Vertex sourceVertex); 
     
    /** 
     * Sets the target vertex of this edge 
     * @param targetVertex The target vertex 
     */ 
    public void setTargetVertex(Vertex targetVertex); 
     
    /** 
     * Getter for the database 
     * @return The database that this element belongs to 
     */ 
    public GraphData getDatabase(); 
 
    /** 
     * Checks the type of the edge - does the type test recursively. 
     * @param type The type being asked 
     * @return True if it is of the given type 
     */ 
    public boolean isOfType(EdgeType type); 
     
    /** 
     * Checks if it is the same edge. Compare the name and the database. 
     * @param edge The edge being checked 
     * @return True if they are the same  
     */ 
    public boolean equals(Edge edge); 
 

EWTable 
 
    /** 
     * Get the top count features in the feature table 
     * @param count The number of top feature to find 
     * @return A vector of vector with all the count best features with  
     * element vector with the source, target and feature value. 
     */ 
    public Vector getTop(int count); 
     
    /** 
     * Adds a feature count to the given pair of input and output vertices 
     * @param v_source The input vertex 
     * @param v_target The output vertex 
     * @param count The feature to add 
     * @return The current feature value  
     */ 
    public double addCount(Vertex v_source, Vertex v_target, double count); 
     
    /** 
     * Get the current feature value given the pair of input and output vertices 
     * @param v_source The input vertex 
     * @param v_target The output vertex 
     * @return The current feature value  
     */ 
    public double getCount(Vertex v_source, Vertex v_target); 
     
    /** 
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     * Getter for the description of the EWTable 
     * @return The description of the table 
     */ 
    public String getDescription(); 
     
    /** 
     * Setter for the description of the table 
     * @param newDescription The description of the table 
     */ 
    public void setDescription(String newDescription); 
     
    /** 
     * Getter for the registered from vertices 
     * @return The names of all from vertices  
     */ 
    public Vector getFromVertices(); 
     
    /**  
     * Getter for the registered to vertices 
     * @return The name of all to vertices  
     */ 
    public Vector getToVertices(); 
 
    /**  
     * Choose one random element using the roulette wheel approach – ADDITION FOR 
     * USING THE GA ALGORITHM 
     * @return The selected starting vertex ID 
     */ 
    public String chooseRoulette(); 
     
    /**  
     * Choose an element based on neighborhood to the starting element and a  
     * distance 
     * @param startingVertex The selected starting vertex for finding the neighbor 
     * @param distance The maximum distance for the neighborhood 
     * @return The ID of the target vertex 
     */ 
    public String getNeighbor(String startingVertex, double distance); 
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